首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   196篇
  国内免费   197篇
测绘学   170篇
大气科学   121篇
地球物理   368篇
地质学   435篇
海洋学   145篇
天文学   47篇
综合类   76篇
自然地理   248篇
  2024年   8篇
  2023年   17篇
  2022年   32篇
  2021年   51篇
  2020年   54篇
  2019年   58篇
  2018年   30篇
  2017年   55篇
  2016年   53篇
  2015年   53篇
  2014年   72篇
  2013年   84篇
  2012年   50篇
  2011年   74篇
  2010年   46篇
  2009年   76篇
  2008年   67篇
  2007年   84篇
  2006年   71篇
  2005年   67篇
  2004年   47篇
  2003年   46篇
  2002年   49篇
  2001年   39篇
  2000年   42篇
  1999年   30篇
  1998年   35篇
  1997年   36篇
  1996年   38篇
  1995年   23篇
  1994年   27篇
  1993年   10篇
  1992年   19篇
  1991年   15篇
  1990年   11篇
  1989年   10篇
  1988年   7篇
  1987年   12篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有1610条查询结果,搜索用时 475 毫秒
31.
We present a new method for centroid moment tensor (CMT) inversion, in which we employ the Green's function computed for aspherical earth models using the Direct Solution Method. We apply this method to CMT inversion of low-frequency seismic spectra for the 1994 Bolivia and 1996 Flores Sea deep earthquakes. The estimated centroid locations agree well with those obtained by multiple-shock analyses using body-wave data. This shows that it is possible to obtain reliable CMT solutions by analyses of low-frequency seismic spectra using accurate Green's functions computed for present 3-D earth models.  相似文献   
32.
We propose a two-step inversion of three-component seismograms that (1) recovers the far-field source time function at each station and (2) estimates the distribution of co-seismic slip on the fault plane for small earthquakes (magnitude 3 to 4). The empirical Green's function (EGF) method consists of finding a small earthquake located near the one we wish to study and then performing a deconvolution to remove the path, site, and instrumental effects from the main-event signal.
The deconvolution between the two earthquakes is an unstable procedure: we have therefore developed a simulated annealing technique to recover a stable and positive source time function (STF) in the time domain at each station with an estimation of uncertainties. Given a good azimuthal coverage, we can obtain information on the directivity effect as well as on the rupture process. We propose an inversion method by simulated annealing using the STF to recover the distribution of slip on the fault plane with a constant rupture-velocity model. This method permits estimation of physical quantities on the fault plane, as well as possible identification of the real fault plane.
We apply this two-step procedure for an event of magnitude 3 recorded in the Gulf of Corinth in August 1991. A nearby event of magnitude 2 provides us with empirical Green's functions for each station. We estimate an active fault area of 0.02 to 0.15 km2 and deduce a stress-drop value of 1 to 30 bar and an average slip of 0.1 to 1.6 cm. The selected fault of the main event is in good agreement with the existence of a detachment surface inferred from the tectonics of this half-graben.  相似文献   
33.
34.
We present an overview of our recent results on utilizing small earthquakes in the earthquake engineering practice. Site-specific ground motion time-histories of large earthquakes can be successfully simulated using recordings of small earthquakes which are often referred to as 'empirical Green's functions' in seismology. Another important practical problem is whether and how these observations can be used in seismic risk studies which are based on empirical attenuation relations for ground motion parameters. We study a possibility of extrapolating attenuation relations for small earthquakes, to larger magnitudes using the data from the Garner Valley downhole array in Southern California. Finally we introduce efficient ground motion processing techniques in frequency- and time-domains and apply them to site response estimation.  相似文献   
35.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   
36.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   
37.
结合某一工程实例 ,探讨钻孔灌注桩先成桩后插钢筋笼法的施工工艺以及配套装置的工作原理、性能特点、适用范围和施工方法  相似文献   
38.
Array measurements of microtremors at 16 sites in the city of Thessaloniki were performed to estimate the Vs velocity of soil formations for site effect analysis. The spatial autocorrelation method was used to determine phase velocity dispersion curves in the frequency range from 0.8–1.5 to 6–7 Hz. A Rayleigh wave inversion technique (stochastic method) was subsequently applied to determine the Vs profiles at all the examined sites. The determination of Vs profiles reached a depth of 320 m. Comparisons with Vs values from cross-hole tests at the same sites proved the reliability of the SPAC method. The accuracy of the Vs profiles, the ability to reach large penetration depths in densely populated urban areas and its low cost compared to conventional geophysical prospecting, make Mictrotremor Exploration Method very attractive and useful for microzonation and site effects studies. An example of its application for the site characterization in Thessaloniki is presented herein.  相似文献   
39.
Fragmentation measurements in the form of sieve passing and mass fraction data were used to test the capability of three different distributions to fit the observed data over a wide range in fragment size and mass. These distributions were based on Rosin-Rammler, lognormal and simple sigmoidal (S-shaped) functions, having 2 input parameters for the single-component versions and 5 input parameters for the two-component versions. Provided convergence was achieved in the non-linear curve-fitting technique, the two-component versions always provided superior fits to the observed data. However, these versions were very sensitive to variations in the values chosen for the input parameters. In this particular regard, the two-component sigmoidal function was the most robust. The present results also show that the two-component lognormal function provided the best fit to the fragmentation data in a general sense, and the two-component Rosin-Rammler function provided the worst fit. However, there was not a significant difference between any of the three methods.  相似文献   
40.
基于正交多项式逼近法的岩土参数概率分布推断   总被引:9,自引:0,他引:9  
针对岩上参数样本容量较大的情况,基于数值分析中的逼近原理,直接根据试验样本值,运用勒让德正交多项式来拟合岩土参数的概率密度函数,并用K-S检验法从理论上证明所求的密度函数的正确性和实用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号