首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6010篇
  免费   772篇
  国内免费   1126篇
测绘学   1388篇
大气科学   751篇
地球物理   1148篇
地质学   2481篇
海洋学   723篇
天文学   83篇
综合类   480篇
自然地理   854篇
  2024年   26篇
  2023年   84篇
  2022年   190篇
  2021年   228篇
  2020年   249篇
  2019年   281篇
  2018年   247篇
  2017年   293篇
  2016年   323篇
  2015年   272篇
  2014年   366篇
  2013年   404篇
  2012年   379篇
  2011年   372篇
  2010年   337篇
  2009年   363篇
  2008年   336篇
  2007年   365篇
  2006年   374篇
  2005年   291篇
  2004年   253篇
  2003年   237篇
  2002年   204篇
  2001年   165篇
  2000年   161篇
  1999年   158篇
  1998年   124篇
  1997年   99篇
  1996年   102篇
  1995年   81篇
  1994年   80篇
  1993年   82篇
  1992年   59篇
  1991年   56篇
  1990年   42篇
  1989年   41篇
  1988年   20篇
  1987年   30篇
  1986年   13篇
  1985年   16篇
  1984年   11篇
  1983年   17篇
  1982年   11篇
  1981年   11篇
  1980年   16篇
  1979年   10篇
  1978年   5篇
  1977年   6篇
  1975年   4篇
  1974年   4篇
排序方式: 共有7908条查询结果,搜索用时 0 毫秒
591.
Ultrahigh temperature (UHT) granulites in the Eastern Ghats Province (EGP) have a complex P–T–t history. We review the P–T histories of UHT metamorphism in the EGP and use that as a framework for investigating the P–T–t history of Mg–Al‐rich granulites from Anakapalle, with the express purpose of trying to reconcile the down‐pressure‐dominated P–T path with other UHT localities in the EGP. Mafic granulite that is host to Mg–Al‐rich metasedimentary granulites at Anakapalle has a protolith age of c. 1,580 Ma. Mg–Al‐rich metasedimentary granulites within the mafic granulite at Anakapalle were metamorphosed at UHT conditions during tectonism at 960–875 Ma, meaning that the UHT metamorphism was not the result of contact metamorphism from emplacement of the host mafic rock. Reworking occurred during the Pan‐African (c. 600–500 Ma) event, and is interpreted to have produced hydrous assemblages that overprint the post‐peak high‐T retrograde assemblages. In contrast to rocks elsewhere in the EGP that developed post‐peak cordierite, the metasedimentary granulites at Anakapalle developed post‐peak, generation ‘2’ reaction products that are cordierite‐absent and nominally anhydrous. Therefore, rocks at Anakapalle offer the unique opportunity to quantify the pressure drop that occurred during so‐called M2 that affected the EGP. We argue that M2 is either a continuation of M1 and that the overall P–T path shape is a complex counter‐clockwise loop, or that M1 is an up‐temperature counter‐clockwise deviation superimposed on the M2 path. Therefore, rather than the rocks at Anakapalle having a metamorphic history that is apparently anomalous from the rest of the EGP, we interpret that other previously studied localities in the EGP record a different part of the same P–T path history as Anakapalle, but do not preserve a significant record of pressure decrease. This is due either to the inability of refractory rocks to extensively react to produce a rich mineralogical record of pressure decrease, or because the earlier high‐P part of the rocks history was erased by the M1 loop. Irrespective of the specific scenario, models for the tectonic evolution of the EGP must take the substantial pressure decrease during M2 into account, as it is probable the P–T record at Anakapalle is a reflection of tectonics affecting the entire province.  相似文献   
592.
Better methods for interpreting grain‐size spectra will enhance current understanding of past transport–depositional processes. A high‐resolution inorganic grain‐size dataset has been measured from a freeze core extracted from ‘Alberta Lake E’ a boreal fresh water lake 40 km east of the Athabasca Oil Sands in north‐eastern Alberta, Canada. The grain‐size spectra are remarkably consistent throughout the core, exhibiting a structure comprising six persistent grain‐size distributions below ca 250 μm, plus a rare medium‐sand distribution. Automated deconvolution of the grain‐size spectra produced poor results. Constraining the modes of two of the distributions produced deconvolution solutions that were statistically excellent and consistent with the structure of each spectrum. Statistical analysis of the ‘constrained’ solutions indicates that deconvolution successfully extracted independent grain‐size populations. Conversely, the multimodal spectra generate traditional measures (for example, mean grain size) that are inconsistent combinations of different individual populations and thus are poor proxies of transport–depositional processes. Alberta Lake E is situated in a boreal wetland landscape where sediment delivery is dominated by overland flow transport during spring melt. This context means that the Alberta Lake E grain‐size spectra can be interpreted to reflect: (i) a bedload component transported during short‐duration high discharge events that reflect the intensity of the melt; and (ii) a finer suspended load component representing material whose magnitude is controlled by the volume of the spring melt. Stratigraphically, bedload and suspended load populations demonstrate different short‐wavelength and long‐wavelength cyclicity, suggesting that spring melt is likely to be driven by cyclic external forcing factors. The links between the grain‐size spectra and spring melt have potential for generating proxy records that better capture the external controls over spring melt in boreal systems and the risks associated with these energetic hydrodynamics. This is exemplified by the coarsest Alberta Lake E distributions, which indicate that more intense spring‐melt dynamics occurred in pre‐historical times.  相似文献   
593.
Numerous lenses of eclogite occur in a belt of augen orthogneisses in the Gubaoquan area in the southern Beishan orogen, an eastern extension of the Tianshan orogen. With detailed petrological data and phase relations, modelled in the system NCFMASHTO with thermocalc , a quantitative P–T path was estimated and defined a clockwise P–T path that showed a near isothermal decompression from eclogite facies (>15.5 kbar, 700–800 °C, omphacite + garnet) to high‐pressure granulite facies (12–14 kbar, 700–750 °C, clinopyroxene + sodic plagioclase symplectitic intergrowths around omphacite), low‐pressure granulite facies (8–9.5 kbar, ~700 °C, orthopyroxene + clinopyroxene + plagioclase symplectites and coronas surrounding garnet) and amphibolite facies (5–7 kbar, 600–700 °C, hornblende + plagioclase symplectites). The major and trace elements and Sm–Nd isotopic data suggest that most of the Beishan eclogite samples had a protolith of oceanic crust with geochemical characteristics of an enriched or normal mid‐ocean ridge basalt. The U–Pb dating of the Beishan eclogites indicates an Ordovician age of c. 467 Ma for the eclogite facies metamorphism. An 39Ar/40Ar age of c. 430 Ma for biotite from the augen gneiss corresponds to the time of retrograde metamorphism. The combined data from geological setting, bulk composition, clockwise P–T path and geochronology support a model in which the Beishan eclogites started as oceanic crust in the Palaeoasian Ocean, which was subducted to eclogite depths in the Ordovician and exhumed in the Silurian. The eclogite‐bearing gneiss belt marks the position of a high‐pressure Ordovician suture zone, and the calculated clockwise P–T path defines the progression from subduction to exhumation.  相似文献   
594.
新疆坎儿井现状及其发展   总被引:2,自引:0,他引:2  
简述了新疆坎儿井的构成、特点、研究意义,分析了坎儿井衰退状况及其原因,列举了已进行的坎儿井保护工作,提出了坎儿井于枯断流的综合治理对策及今后的发展方向。  相似文献   
595.
塔里木盆地寒武-奥陶系白云岩度大、分布广,是重要的油气储集层.根据岩石学研究并结合地球化学特征将其分为4类,其特点如下:(1)泥晶-粉晶白云岩,白云石晶体小、晶形差,有序度在4类中最低(0.73);Na、K、Sr含量在4类中最高;δ13C值及Z值较高,分别为-0.94‰、122.3;Fe、Mn含量较低;阴极发光为亮桔红色;常呈纹层状,具暴露及成化标志.这些特征表明其结晶较快,形成环境蒸发强烈、盐度较高、氧化性较强,是在萨布哈环境中由浓缩海水发生白云石化所形成.(2)藻纹层白云岩,白云石晶体小,晶形较好,有序度较高(0.85);藻纹层基本保留了其原始微细结构;Na、K、Sr含量较低:δC值在4类中最高,平均为-0.50‰;含有较多黄铁矿.这些特征说明其可能形成于成岩作用的稍早期阶段且其成因与藻类活动密切相关,成岩环境盐度较低,可能是在藻类作用下,由富藻层浓集的镁与残留海水在浅埋藏环境中共同作用所形成.(3)雾心亮边白云岩,白云石普遍具雾心亮边结构,雾心含少量包裹体及灰质残余,亮边则少见或无;阴极发光下,雾心发亮桔黄色光,亮边发光暗或不发光;局部见此类白云石;呈星散状分布于亮晶颗粒灰岩或泥晶灰岩中;白云石晶体较大,晶形较好.此类白云岩的δ13C及Z值在4类中最低,K、Na、Sr、Fe含量相对较低,Mn含量最高;有序度较高,均值为0.83.这些特征表明此类白云岩中白云石的雾心可能是在早期浅埋藏环境中,由富镁孔隙水交代周围灰质所形成;亮边则形成于埋藏较深的环境,其所需镁可能来源于粘土矿物的转化.(4)重结晶白云岩:白云石晶体粗大且污浊,接触紧密;局部见白云石晶体具环带结构,局部见颗粒幻影结构;阴极发光较暗;Fe含量在4类中最高,Mn含量较高;有序度最高,平均为0.95;包裹体均一温度平均为110.2℃.这些特征表明其可能是在还原性较强的深埋藏环境中,由早期形成的白云岩经较强的重结晶作用所形成.  相似文献   
596.
Structural, magnetic and gravity trends of the southern New England Orogen (SNEO) indicate four oroclinal structures, none conclusively confirmed paleomagnetically. Curved structures of the Tamworth Belt (TB)—a continental forearc exposed across six tectono-stratigraphic blocks with interlinked Carboniferous stratigraphies and extensive ignimbritic rocks known to retain primary magnetisations despite prevalent overprinting—are prospective to oroclinal testing through comparison of Carboniferous pole paths for individual blocks. Pole paths (a) have been established for the Rocky Creek and Werrie blocks (northwestern/western TB), (b) are described herein for the Rouchel Block (southwestern TB), and (c) are forthcoming for the Gresford and Myall blocks (southern/southeastern TB). The Rouchel path derives from detailed paleomagnetic, rock magnetic and magnetic fabric studies. Thermal, alternating field and liquid nitrogen demagnetisations show a low-temperature overprint, attributed to late Oligocene weathering, and high-temperature (HT) primary and overprint components in both magnetite and hematite carriers, showing slight, systematic, directional differences with hematite providing the better cleaned site poles. Seven primary mean-site poles of Tournaisian and mainly Visean age and three overprint poles show six positive fold tests, five at 95% or higher confidence levels. Two dispersed groupings of intermediate (IT) and HT overprint site poles of Permian and Permo-Triassic age are attributed to early and late phases in oroclinal evolution of the SNEO. HT and IT/HT overprint site poles of mid-Carboniferous age are attributed to Variscan Australia–Asia convergence. Individual pole paths for the Rocky Creek, Werrie and Rouchel blocks show no noticeable rotation between them, indicating primary curvature for the southwestern TB. Their integrated SNEO pole path establishes a reference frame for determining rotations of the southern and southeastern TB.  相似文献   
597.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
598.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
599.
海沟金矿地质-地球化学特征及其成矿机制探讨   总被引:3,自引:0,他引:3  
海沟金矿床产于海沟花岗岩体中,受NE-NNE向断裂控制,为大型贫硫化物石英脉型金矿床.微量元素研究表明成矿作用以充填作用为主,矿床主要指示元素为Au、Ag、Hg、Pb、Bi、Mo,由上至下的轴向分带序列为Ba-Hg-Ag-Bi-Au-As-Sb-Pb-Mo.同位素和流体地球化学资料表明成矿物源与色洛河群变质岩系和海沟花岗岩有关,成矿流体由岩浆水和古大气降水组成,流体属CO2-NaCl-Na2SO4-H2O型.在区域地质构造演化背景下,深大断裂的活动导致富金的色洛河群变质岩系发生深熔作用形成海沟花岗岩及富矿质和矿化剂的岩浆热液,同时也产生了以大气降水为主的含矿热液.在143 Ma左右,随区内应力场转变为张性,并在岩体和周边地层中形成大量NE-NNE向次级断裂系统,富矿质和矿化剂的岩浆热液和以大气降水为主的含矿热液的平衡被打破,导致两种流体向NE-NNE向次级断裂系统的扩容带迁移,混合作用、沸腾作用以及物化条件的改变导致金的沉淀,从而造就了海沟金矿床.  相似文献   
600.
通过天津地区几例钻孔灌注桩桩底注浆的静载荷试桩结果 ,分析天津地区钻孔灌注桩桩底注浆单桩竖向极限承载力标准值的估算方法  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号