首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7657篇
  免费   1078篇
  国内免费   1398篇
测绘学   1588篇
大气科学   1873篇
地球物理   1268篇
地质学   2620篇
海洋学   678篇
天文学   39篇
综合类   602篇
自然地理   1465篇
  2024年   26篇
  2023年   97篇
  2022年   275篇
  2021年   366篇
  2020年   355篇
  2019年   465篇
  2018年   279篇
  2017年   350篇
  2016年   404篇
  2015年   419篇
  2014年   465篇
  2013年   528篇
  2012年   499篇
  2011年   496篇
  2010年   397篇
  2009年   492篇
  2008年   460篇
  2007年   508篇
  2006年   446篇
  2005年   363篇
  2004年   357篇
  2003年   278篇
  2002年   240篇
  2001年   226篇
  2000年   253篇
  1999年   176篇
  1998年   162篇
  1997年   143篇
  1996年   132篇
  1995年   115篇
  1994年   94篇
  1993年   78篇
  1992年   62篇
  1991年   36篇
  1990年   22篇
  1989年   22篇
  1988年   19篇
  1987年   8篇
  1986年   2篇
  1985年   8篇
  1984年   2篇
  1982年   2篇
  1979年   3篇
  1978年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 454 毫秒
161.
1. Introduction It is well-known that the state of ocean plays very important role in the climate change. But there is a paucity of the ocean observation data. The data distri- bution in the space, time and different components is very inhomogeneous, even in some areas, there are no any observation data. Hence, it brings some diffcul- ties to the scientists to study many problems relevant to ocean. This situation has been being changed since ARGO (Array for Real-time Geostrophic Oceanogra-…  相似文献   
162.
Landslides are common natural hazards in the seismically active North Anatolian Fault Zone of Turkey. Although seismic activity, heavy rainfall, channel incisions, and anthropogenic effects are commonly the main triggers of landslides, on March 17, 2005, a catastrophic large landslide in Sivas, northeastern of Turkey, the Kuzulu landslide, was triggered by snowmelt without any other precursor. The initial failure of the Kuzulu landslide was rotational. Following the rotational failure, the earth material in the zone of accumulation exhibited an extremely rapid flow caused by steep gradient and high water content. The Agnus Creek valley, where Kuzulu village is located, was filled by the earth-flow material and a landslide dam was formed on the upper part of Agnus Creek. The distance from the toe of the rotational failure down to the toe of the earth flow measured more than 1800 m, with about 12.5 million m3 of displaced earth material. The velocity of the Kuzulu landslide was extremely fast, approximately 6 m/s. The main purposes of this study are to describe the mechanism and the factors conditioning the Kuzulu landslide, to present its environmental impacts, and to produce landslide-susceptibility maps of the Kuzulu landslide area and its near vicinity. For this purpose, a detailed landslide inventory map was prepared and geology, slope, aspect, elevation, topographic-wetness index and stream-power index were considered as conditioning factors. During the susceptibility analyses, the conditional probability approach was used and a landslide-susceptibility map was produced. The landslide-susceptibility map will help decision makers in site selection and the site-planning process. The map may also be accepted as a basis for landslide risk-management studies to be applied in the study area.  相似文献   
163.
本文利用2001-2003年南极中山站175天全天空摄像机观测,对午后多重极光弧的出现率及其与Kp指数的关系进行了统计分析,结果表明午后多重极光弧出现率呈一单峰分布,最大发生率出现在1445UT(1645MLT),其位置在1500MLT极光热点(1300-1700MLT)近夜侧的部分。与地磁活动指数Kp的相关统计分析表明,Kp值为2-3之间时多重极光弧有较大的出现率,这说明中等地磁活动情形下午后多重极光弧有较高的出现率。事件分析表明多重极光弧的强度变化与地磁Pc5脉动具有较高的相关性,并且有类似的频谱特征,这说明午后多重极光弧可能与同时出现的Pc5地磁脉动有关。  相似文献   
164.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   
165.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   
166.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
167.
本文在对国内外遥感图像分类方法充分研究分析的基础上,选择决策树分类法对大屯矿区的Landsat 8遥感图像进行分类研究。选取样本提取并分析研究区典型地类光谱特征曲线,依据光谱曲线特征和归一化植被指数建立了土地利用分类决策树模型,通过反复试验和修正,筛选出适宜大屯矿区地物分类的决策树最优阈值,对研究区进行分类和精度评价,最后通过分类结果对研究区的水体污染状况进行简要分析。  相似文献   
168.
利用Savitzky-Golay滤波对覆盖江西省范围的SPOT VGT NDVI时间序列数据进行平滑处理的基础上,结合坡度数据,通过非监督分类的方法提取了江西省2000、2005和2010年水稻种植范围,并根据NDVI的年内动态变化,从水稻种植范围、水稻生长季起始时间、水稻复种指数和NDVI最大振幅等分析了江西省水稻种植和生长情况,探讨2000~2010年江西省水稻生产的变化。  相似文献   
169.
运用ENVI软件处理长沙地区的SPOT-5影像,将全色影像和多波段影像进行融合,分析融合后的影像,再选择感兴趣区域进行影像裁剪;采用ENVI的波段运算(Band3/Band2)提取该地区比值植被指数并进行分析。结果表明:比值植被指数对植被覆盖率较高的区域有非常高的敏感度;在植被覆盖率小于50%的时候,其敏感度明显降低,在绿色植被覆盖区域的比值植被指数远大于1,在裸露地表、建筑物、水体等没有植被覆盖区域的比值植被指数则在1附近,而比值植被指数大于2的则出现在高覆盖健康绿色植被上。  相似文献   
170.
合成孔径雷达(SAR)具有全天候全天时的特点,为快速展开地震救援,评估震害损失提供了重要的数据支持。本文基于汶川震中东南平原地区的ENVISATASAR影像,利用相位干涉方法处理得到相干变化指数图像,对6个评估区域的像元相干变化指数进行统计分析,以相干变化指数平均值作为区分建筑物基本完好与损毁的阈值,并与实地调查结果相比,精度基本达到70%。验证干涉相干变化指数法对震害快速评估有效的同时,也为震区提供震害救援的依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号