首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1478篇
  免费   289篇
  国内免费   384篇
测绘学   362篇
大气科学   672篇
地球物理   239篇
地质学   288篇
海洋学   195篇
天文学   80篇
综合类   92篇
自然地理   223篇
  2024年   34篇
  2023年   55篇
  2022年   92篇
  2021年   89篇
  2020年   109篇
  2019年   110篇
  2018年   72篇
  2017年   95篇
  2016年   88篇
  2015年   99篇
  2014年   112篇
  2013年   140篇
  2012年   145篇
  2011年   118篇
  2010年   83篇
  2009年   82篇
  2008年   91篇
  2007年   109篇
  2006年   76篇
  2005年   54篇
  2004年   46篇
  2003年   41篇
  2002年   23篇
  2001年   21篇
  2000年   22篇
  1999年   20篇
  1998年   16篇
  1997年   16篇
  1996年   13篇
  1995年   11篇
  1994年   13篇
  1993年   12篇
  1992年   8篇
  1991年   8篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有2151条查询结果,搜索用时 218 毫秒
611.
There are few multibasin analyses of the effects of urban land cover on seasonal stream flow patterns within northern watersheds where winter snow cover is the norm. In this study, the effects of urban cover on stream flow were evaluated at nine catchments in southern Ontario, Canada, which vary greatly in urban impervious cover (1–84%) but cluster into two groups having ≥54% urban impervious area (‘urban’) and ≤11% impervious cover (‘rural’), respectively. Annual and seasonal run‐off totals (millimetres) were similar between the rural and urban groups and were relatively insensitive to urban cover. Instead, urban streams had significantly greater high flow frequency, flow variability and quickflow and lower baseflow compared with rural streams. Furthermore, differences in high flow frequency between urban and rural stream groups were largest in the summer and fall and less extreme in the winter and spring, perhaps because of the homogenizing effect of winter snow cover, frozen ground and spring melt on surface imperviousness. Although the clear clustering of streams into urban and rural groups precluded the identification of a threshold above which urban cover is the primary cause of flow differences, relatively high extreme flow frequency and flow variability in the two most urbanized of the rural streams (10–11% impervious) suggest that it may lie close to this range. Furthermore, whereas total run‐off volumes were not affected by urban cover, increases in stream flashiness and a greater frequency of high flow events particularly during the summer and fall may negatively impact stream biota and favour the transfer of surface‐deposited pollutants to urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
612.
Extreme weather is an important noise factor in affecting dynamic access to river morphology information.The response characteristics of river channel on climate disturbances draw us to develop a method to investigate the dynamic evolution of bankfull channel geometries(including the hydraulic geometry variables and bankfull discharges)with stochastic differential equations in this study.Three different forms of random inputs,including single Gaussian white noise and compound Gaussian/Fractional white noise plus Poisson noise,are explored respectively on the basis of the classical deterministic models.The model parameters are consistently estimated by applying a composite nonparametric maximum likelihood estimation(MLE)method.Results of the model application in the Lower Yellow River reveal the potential responses of bankfull channel geometries to climate disturbances in a probabilistic way,and,the calculated average trends mainly run to synchronize with the measured values.Comparisons among the three models confirm the advantage of Fractional jump-diffusion model,and through further discussion,stream power based on such a model is concluded as a better systematic measure of river dynamics.The proposed method helps to offer an effective tool for analyzing fluvial relationships and improves the ability of crisis management of river system under varying environment conditions.  相似文献   
613.
Comparative hydrology has been hampered by limited availability of geographically extensive, intercompatible monitoring data on comprehensive water balance stores and fluxes. These limitations have, for example, restricted comprehensive assessment of multiple dimensions of wetting and drying related to climate change and hampered understanding of why widespread changes in precipitation extremes are uncorrelated with changes in streamflow extremes. Here, we address this knowledge gap and underlying data gap by developing a new data synthesis product and using that product to detect trends in the frequencies and magnitudes of a comprehensive set of hydroclimatic and hydrologic extremes. CHOSEN (Comprehensive Hydrologic Observatory Sensor Network) is a database of streamflow, soil moisture, and other hydroclimatic and hydrologic variables from 30 study areas across the United States. An accompanying data pipeline provides a reproducible, semi-automated approach for assimilating data from multiple sources, performing quality assurance and control, gap-filling and writing to a standard format. Based on the analysis of extreme events in the CHOSEN dataset, we detected hotspots, characterized by unusually large proportions of monitored variables exhibiting trends, in the Pacific Northwest, New England, Florida and Alaska. Extreme streamflow wetting and drying trends exhibited regional coherence. Drying trends in the Pacific Northwest and Southeast were often associated with trends in soil moisture and precipitation (Pacific Northwest) and evapotranspiration-related variables (Southeast). In contrast, wetting trends in the upper Midwest and the Rocky Mountains showed few univariate associations with other hydroclimatic extremes, but their latitudes and elevations suggested the importance of changing snowmelt characteristics. On the whole, observed trends are incompatible with a ‘drying-in-dry, wetting-in-wet’ paradigm for climate-induced hydrologic changes over land. Our analysis underscores the need for more extensive, longer-term observational data for soil moisture, snow and evapotranspiration.  相似文献   
614.
The spatial‐temporal characteristics of mean annual daily maximum precipitation events in the upper Yangtze River basin in China are examined using a framework termed precipitation regional extreme mapping (PREM). The framework consists of regional analyses and mapping methods, which have the capability to assess the presence or absence of climate change. The findings confirm the homogeneous regions identified by Wang (2002) using a heterogeneity measure, where all three regions have heterogeneity less than 1.0. The Pearson type III (PE3) distribution was found to be acceptable for all three regions, while the generalized extreme‐value distribution performs better than PE3 for Region I (eastern portion of the upper Yangtze basin). Two indices, root mean square error and mean bias, were used to access the performance of the extreme map, and the results show that the map of extreme can predict precipitation for ungauged regions with acceptable accuracy. The regional frequency maps were used in conjunction with the Student's t‐test to identify the statistical significance of changes of extremes in precipitation. Results indicate that there have been no significant changes in maximum daily precipitation magnitudes over the past four decades, a finding that is valuable for the safe planning of major hydraulic projects and the management and planning of water resources in the upper Yangtze River basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
615.
2013年夏季中国南方区域性高温天气的成因分析   总被引:3,自引:0,他引:3  
为了对2013年夏季中国南方区域性高温天气进行系统的分析,采用统计分析等方法,利用常规气温资料及NCEP/NCAR再分析资料讨论了此次高温的特征及成因。结果表明:2013年夏季中国南方地区发生的高温事件相对历史同期增多,主要集中在华南北部至华北南部一带,其区域性高温天气的极端性十分突出,研究区域内的日平均气温、平均日最高气温、平均日最低气温以及高温日数都打破最高纪录,为历史罕见;西太平洋副热带高压范围偏大、强度偏强、西伸脊点位置偏西、脊线偏北,南亚高压偏北偏东,热带气旋活动范围偏南,出梅较早、梅雨季节短等因素导致中国南方长江中下游地区出现了长时间的区域性高温天气。  相似文献   
616.
South Asia is drained by some of the most flood‐prone rivers in the world. Flooding during the monsoon season is the most recurring, widespread and disastrous natural hazard in South Asia that results in enormous social, economic and environment consequences every year. Several massive floods have occurred in the recent decades causing huge economic losses and human suffering. On average, the total damage is close to USD 1 billion annually. To answer the question whether flooding in South Asia is getting worse and more frequent, all available data were considered: the annual peak discharge data for major rivers, post‐1985 information on floods from the global archive of large floods and palaeoflood records from nine Indian rivers. According to the global archive data, 372 large and 55 extreme flood events have occurred since 1985. Although there is no significant trend, all types of data point to clustering of large floods. Palaeoflood records show that modern floods (post‐1950) have higher flood levels than the late Holocene floods. Notwithstanding the limitations of data, there is enough evidence to conclude that (1) incidences of flood‐generating extreme rainfall event are rising and (2) human interventions have made the recent floods more destructive.  相似文献   
617.
This paper reports our review of research on domestic climate extremes conducted by US physical geographers over the past 15?years. Sections cover extremes in wind, precipitation, lightning, and temperature, as well as derivative climate extremes (droughts, floods, and storm surges). Themes considered include: the spatial and temporal distribution of the climate extreme; its implications for our understanding of the physical processes that produce it; the spatial and temporal distributions of the extreme’s economic and human costs; lessons for assessment, policy, and management; and scale. We conclude that most of the works reviewed inadequately address the human basis of vulnerability to climate extremes, and encourage physical geographers to work with colleagues from the other subfields of geography and the social sciences to develop the holistic understanding of vulnerability needed to effectively adapt to the more extreme climate projected under climate change.  相似文献   
618.
针对地图制图数据库更新中多源数据匹配问题,通过提取线目标中的特征点,建立一种基于空间位置和拓扑关系的匹配模型,对特征点进行相似性匹配。实验证明该模型匹配效果良好,基本满足数据更新中图形纠正的需要。  相似文献   
619.
谷延超  范东明 《测绘工程》2014,23(10):23-26
针对机载激光点云数据栅格化过程中出现的空白区域进行研究,在对邻近填充和最低点填充分析的基础上,提出基于地形的填充方法。对缺失数据边界进行一维形态学滤波得到其边界各点地形高,利用边界点构建不规则三角网进行地形内插填充。实验结果表明,地形填充法可适应不同原因造成的区域数据缺失,能够有效保证高程的连续性并可提高滤波精度。  相似文献   
620.
本文主要介绍沛县张双楼煤矿会议中心改扩建工程,以及在整个施工过程中的沉降观测实测方案。其主要内容包括监测的技术依据、监测内容、基准点和变形监测的布设、变形监测的主要技术指标及成果资料的分析、整理与提交等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号