首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5313篇
  免费   510篇
  国内免费   670篇
测绘学   1587篇
大气科学   866篇
地球物理   1224篇
地质学   1078篇
海洋学   593篇
天文学   174篇
综合类   382篇
自然地理   589篇
  2024年   23篇
  2023年   46篇
  2022年   75篇
  2021年   141篇
  2020年   179篇
  2019年   187篇
  2018年   128篇
  2017年   202篇
  2016年   233篇
  2015年   246篇
  2014年   280篇
  2013年   441篇
  2012年   272篇
  2011年   309篇
  2010年   217篇
  2009年   292篇
  2008年   310篇
  2007年   359篇
  2006年   301篇
  2005年   281篇
  2004年   208篇
  2003年   200篇
  2002年   189篇
  2001年   149篇
  2000年   139篇
  1999年   128篇
  1998年   146篇
  1997年   137篇
  1996年   106篇
  1995年   79篇
  1994年   65篇
  1993年   71篇
  1992年   60篇
  1991年   39篇
  1990年   43篇
  1989年   43篇
  1988年   38篇
  1987年   29篇
  1986年   24篇
  1985年   22篇
  1984年   15篇
  1983年   9篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1971年   1篇
  1954年   2篇
排序方式: 共有6493条查询结果,搜索用时 15 毫秒
991.
Intensity Analysis is a mathematical framework that compares a uniform intensity to observed intensities of temporal changes among categories. Our article summarizes Intensity Analysis and presents a new method to compute the minimum hypothetical error in the data that could account for each observed deviation from a uniform intensity. A larger hypothetical error gives stronger evidence against a hypothesis that a change is uniform. The method produces results for five groups of measurements, which are organized into three levels of analysis: interval, category, and transition. The method applies generally to analysis of changes among categories during time intervals, because the input is a standard contingency table for each time interval. We illustrate the method with a case study concerning change during three time intervals among four land categories in northeastern Massachusetts, USA. Modelers can perform the analysis using our computer program, which is free.  相似文献   
992.
Handling of uncertainty in the estimation of values from source areas to target areas poses a challenge in areal interpolation research. Stochastic model-based methods offer a basis for incorporating such uncertainty, but to date they have not been widely adopted by the GIS community. In this article, we propose one use of such methods based in the problem of interpolating count data from a source set of zones (parishes) to a more widely used target zone geography (postcode sectors). The model developed also uses ancillary statistical count data for a third set of areas nested within both source and target zones. The interpolation procedure was implemented within a Bayesian statistical framework using Markov chain Monte Carlo methods, enabling us to take account of all sources of uncertainty included in the model. Distributions of estimated values at the target zone level are presented using both summary statistics and as individual realisations selected to illustrate the degree of uncertainty in the interpolation results. We aim to describe the use of such stochastic approaches in an accessible way and to highlight the need for quantifying estimation uncertainty arising in areal interpolation, especially given the implications arising when interpolated values are used in subsequent analyses of relationships.  相似文献   
993.
This article presents a framework for estimating a new topographic attribute derived from digital elevation models (DEMs) called maximum branch length (B max). Branch length is defined as the distance travelled along a flow path initiated at one grid cell to the confluence with the flow path passing through a second cell. B max is the longest branch length measured for a grid cell and its eight neighbours. The index provides a physically meaningful method for assessing the relative significance of drainage divides to the dispersion of materials and energy across a landscape, that is, it is a measure of ‘divide size’. B max is particularly useful for studying divide network structure, for mapping drainage divides, and in landform classification applications. Sensitivity analyses were performed to evaluate the robustness of estimates of B max to the algorithm used to estimate flow lengths and the prevalence of edge effects resulting from inadequate DEM extent. The findings suggest that the index is insensitive to the specific flow algorithm used but that edge effects can result in significant underestimation along major divides. Edge contamination can, however, be avoided by using an appropriately extensive DEM.  相似文献   
994.
将雷达测雨数据与分布式水文模型相耦合进行径流过程模拟,分析雷达测雨误差及其径流过程模拟效果,研究雷达测雨误差对径流过程模拟的影响效应.在对淮河流域气象中心业务化的5种淮河流域雷达测雨数据进行误差分析的基础上,采用雷达测雨数据驱动HEC-HMS水文模型,模拟分析淮河息县水文站以上流域2007年7月1-10日强降雨集中期的径流过程.结果表明:利用雷达测雨数据的径流模拟结果与实测资料的模拟结果基本吻合,各种雷达测雨数据误差经过HEC-HMS水文模型传递后,误差明显减小.联合校准法对应的模拟效果最好,过程流量相对误差NBs'和洪峰流量相对误差Z'分别为-20.2%和-13.3%.  相似文献   
995.
A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.  相似文献   
996.
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated.  相似文献   
997.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
ABSTRACT

An appropriate streamflow forecasting method is a prerequisite for implementation of efficient water resources management in the water-limited, arid regions that occupy much of Iran. In the current research, monthly streamflow forecasting was combined with three data-driven methods based on large input datasets involving 11 precipitation stations, a natural streamflow, and four climate indices through a long period. The major challenges of rainfall–runoff modelling are generally attributed to complex interacting processes, the large number of variables, and strong nonlinearity. The sensitivity of data-driven methods to the dimension of input/output datasets would be another challenge, so large datasets should be compressed into independently standardized principal components. In this study, three pre-processing techniques were applied: singular value decomposition (SVD) provided more efficient forecasts in comparison to principal component analysis (PCA) and average values of inputs in all networks. Among the data-driven methods, the multi-layer perceptron (MLP) with 1-month lag-time outperformed radial basis and fuzzy-based networks. In general, an increase in monthly lag-time of streamflow forecasting resulted in a decline in forecasting accuracy. The results reveal that SVD was highly effective in pre-processing of data-driven evaluations.  相似文献   
999.
ABSTRACT

There is great potential in Data Assimilation (DA) for the purposes of uncertainty identification, reduction and real-time correction of hydrological models. This paper reviews the latest developments in Kalman filters (KFs), particularly the Extended KF (EKF) and the Ensemble KF (EnKF) in hydrological DA. The hydrological DA targets, methodologies and their applicability are examined. The recent applications of the EKF and EnKF in hydrological DA are summarized and assessed critically. Furthermore, this review highlights the existing challenges in the implementation of the EKF and EnKF, especially error determination and joint parameter estimation. A detailed review of these issues would benefit not only the Kalman-type DA but also provide an important reference to other hydrological DA types.
Editor D. Koutsoyiannis; Associate editor F. Pappenberger  相似文献   
1000.
Abstract

Recent work pertaining to estimating error and accuracies in geomagnetic field modeling is reviewed from a unified viewpoint and illustrated with examples. The formulation of a finite dimensional approximation to the underlying infinite dimensional problem is developed. Central to the formulation is an inner product and norm in the solution space through which a priori information can be brought to bear on the problem. Such information is crucial to estimation of the effects of higher degree fields at the Core-Mantle boundary (CMB) because the behavior of higher degree fields is masked in our measurements by the presence of the field from the Earth's crust. Contributions to the errors in predicting geophysical quantities based on the approximate model are separated into three categories: (1) the usual error from the measurement noise; (2) the error from unmodeled fields, i.e. from sources in the crust, ionosphere, etc.; and (3) the error from truncating to a finite dimensioned solution and prediction space. The combination of the first two is termed low degree error while the third is referred to as truncation error.

The error analysis problem consists of “characterizing” the difference δz = z—z, where z is some quantity depending on the magnetic field and z is the estimate of z resulting from our model. Two approaches are discussed. The method of Confidence Set Inference (CSI) seeks to find an upper bound for |z—?|. Statistical methods, i.e. Bayesian or Stochastic Estimation, seek to estimate Ez2 ), where E is the expectation value. Estimation of both the truncation error and low degree error is discussed for both approaches. Expressions are found for an upper bound for |δz| and for Ez2 ). Of particular interest is the computation of the radial field, B., at the CMB for which error estimates are made as examples of the methods. Estimated accuracies of the Gauss coefficients are given for the various methods. In general, the lowest error estimates result when the greatest amount of a priori information is available and, indeed, the estimates for truncation error are completely dependent upon the nature of the a priori information assumed. For the most conservative approach, the error in computing point values of Br at the CMB is unbounded and one must be content with, e.g., averages over some large area. The various assumptions about a priori information are reviewed. Work is needed to extend and develop this information. In particular, information regarding the truncated fields is needed to determine if the pessimistic bounds presently available are realistic or if there is a real physical basis for lower error estimates. Characterization of crustal fields for degree greater than 50 is needed as is more rigorous characterization of the external fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号