首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4177篇
  免费   609篇
  国内免费   670篇
测绘学   1862篇
大气科学   859篇
地球物理   684篇
地质学   876篇
海洋学   458篇
天文学   84篇
综合类   474篇
自然地理   159篇
  2024年   10篇
  2023年   44篇
  2022年   98篇
  2021年   126篇
  2020年   184篇
  2019年   226篇
  2018年   127篇
  2017年   216篇
  2016年   207篇
  2015年   252篇
  2014年   266篇
  2013年   314篇
  2012年   307篇
  2011年   321篇
  2010年   218篇
  2009年   252篇
  2008年   239篇
  2007年   303篇
  2006年   253篇
  2005年   211篇
  2004年   175篇
  2003年   137篇
  2002年   121篇
  2001年   108篇
  2000年   75篇
  1999年   70篇
  1998年   123篇
  1997年   76篇
  1996年   68篇
  1995年   54篇
  1994年   56篇
  1993年   54篇
  1992年   36篇
  1991年   25篇
  1990年   28篇
  1989年   23篇
  1988年   16篇
  1987年   14篇
  1986年   7篇
  1985年   3篇
  1984年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1954年   2篇
排序方式: 共有5456条查询结果,搜索用时 15 毫秒
111.
MODIS 1B影像几何纠正方法研究及软件实现   总被引:24,自引:0,他引:24  
MODIS影像是一种新型和重要的数据。对MODIS 1B影像几何畸变原因进行了深入分析,选择了一种合适的纠正方法。对于1km分辨率MODIS 1B影像,直接采用1km分辨率的空间坐标进行几何纠正;对于250m和500m分辨率的MODIS 1B影像,先用三次样条曲线对坐标进行插值生成同分辨率的坐标,然后利用坐标插值结果对其进行几何纠正。由于MODIS影像在空问分布上的特殊性,采用前向和后向映射相结合的方式确定纠正后某一像素点在原始影像中的位置。根据该位置的条带重叠度,可以确定参与计算像素个数、搜索窗口的大小以及窗口的精确位置;采用归一化反距离加权插值法计算纠正后像素点的属性值。上述优化算法不仅保证了纠正后影像的质量,而且提高了数据处理速度。作者在Visual C 6.0环境下开发实现了上述算法。从坐标插值和几何纠正结果分析,无论是数据处理速度还是纠正后的影像质量和精度均达到要求。  相似文献   
112.
基于典型相关分析的变化检测中变化阈值的确定   总被引:11,自引:2,他引:11  
盛辉  廖明生  张路 《遥感学报》2004,8(5):451-457
以东营市为例 ,把基于典型相关分析的方法运用于多时相遥感影像的变化检测中。对于变化阈值的确定 ,采用了一种基于贝叶斯理论的最小错误率的方法。这种方法实质上是一种非监督分类的方法 ,即不需要地面实况数据或其它先验知识 ,直接对典型相关处理后的差值图像进行分析计算得到阈值 ,使变化检测的错误率达到最小。实验结果证明了这种方法的有效性。  相似文献   
113.
基于二维直接线性变换的数字相机畸变模型的建立   总被引:10,自引:3,他引:10  
提出并论证了基于二维直接线性变换的畸变的校正方法。本方法特别适用于各类固态摄像机(CCD、CID、PSD)的畸变模型的建立,以补偿各类像点系统误差。  相似文献   
114.
In our previous study (Earthquake Engineering and Structural Dynamics 2003; 32 :2301), we have developed a probabilistic algorithm for active control of structures. In the probabilistic control algorithm, the control force is determined by the probability that the structural energy exceeds a specified target critical energy, and the direction of a control force is determined by the Lyapunov controller design method. In this paper, an experimental verification of the proposed probabilistic control algorithm is presented. A three‐story test structure equipped with an active mass driver (AMD) has been used. The effectiveness of the control algorithm has been examined by exciting the test structure using a sinusoidal signal, a scaled El Centro earthquake and a broadband Gaussian white noise; and, especially, experiments on control have been performed under different conditions to that of system identification in order to prove the stability and robustness of the proposed control algorithm. The experimental results indicate that the probabilistic control algorithm can achieve a significant response reduction under various types of ground excitations even when the modeling error exists. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
115.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   
116.
Although Eddy Covariance (EC) technique is one of the best methods for estimating the energy and mass exchanges between underlying surface and atmosphere in micrometeorology, errors and uncertainties still exist without necessary corrections. In this paper, we will focus on the effect of coordinate system on the eddy fluxes. Based on the data observed over four sites (one farmland site, one grassland site and two forest sites), the effects of three coordinate system transforming methods (Double Rotation-DR, Triple Rotation-TR and Planar Fit-PF)on the turbulent fluxes are analyzed. It shows that (i) the corrected fluxes are more or less than the uncorrected fluxes, which is related mainly to the sloping degree of surface, wind speed and wind direction; and (ii) pitch angle has a sinusoidal dependence on wind direction, especially in the regular sloping terrain; and (iii) PF method is something like the simplification of TR or DR,and there are not obvious distinctions in correction in sloping grassland and flat farmland, but PF method is not suitable for uneven and irregular forest sites.  相似文献   
117.
Resuspension estimates given by two different trap methods in a shallow lake were compared. The sensitivity of the methods to errors in estimates of gross sedimentation and organic fraction of trapped material was explored. The methods were label method, in which resuspension is estimated by determining the organic fraction of surface sediment, suspended seston and trapped material, and SPIM/SPM method, where the relationship between settling particulate inorganic matter (SPIM) and total settling particulate matter (SPM) is used. During the whole 111 day study period, according to the label method, at a sheltered station 1949 g m−2 dry weight of sediment was resuspended, whereas SPIM/SPM gave an estimate of 1815 g m−2. The difference in the estimates was probably due to mineralization loss of organic material in the traps during the two week exposure periods. Sensitivity analysis showed that of the two methods, the label method was more sensitive to variations in the organic content of trapped material. At a wind-exposed station, the total amounts of resuspended matter given by the label method and by the SPIM/SPM method were 4966 g m−2 and 4971 g m−2, respectively. Due to wind effects, escape of trapped material took place, which caused underestimation of gross sedimentation and compensated the effects of mineralization loss to diminish the difference between the methods. Of the two methods, the SPIM/SPM method seems thus more suitable for lakes, where bacterial activity is high. If cyanobacterial blooms take place, the label method is probably more reliable, providing that the exposure time of sediment traps is kept adequately short.  相似文献   
118.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
119.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
120.
Diagnosing the source of errors in snow models requires intensive observations, a flexible model framework to test competing hypotheses, and a methodology to systematically test the dominant snow processes. We present a novel process‐based approach to diagnose model errors through an example that focuses on snow accumulation processes (precipitation partitioning, new snow density, and snow compaction). Twelve years of meteorological and snow board measurements were used to identify the main source of model error on each snow accumulation day. Results show that modeled values of new snow density were outside observational uncertainties in 52% of days available for evaluation, while precipitation partitioning and compaction were in error 45% and 16% of the time, respectively. Precipitation partitioning errors mattered more for total winter accumulation during the anomalously warm winter of 2014–2015, when a higher fraction of precipitation fell within the temperature range where partition methods had the largest error. These results demonstrate how isolating individual model processes can identify the primary source(s) of model error, which helps prioritize future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号