首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8465篇
  免费   729篇
  国内免费   505篇
测绘学   2752篇
大气科学   354篇
地球物理   1401篇
地质学   1996篇
海洋学   1263篇
天文学   49篇
综合类   762篇
自然地理   1122篇
  2024年   11篇
  2023年   32篇
  2022年   117篇
  2021年   187篇
  2020年   227篇
  2019年   223篇
  2018年   179篇
  2017年   374篇
  2016年   291篇
  2015年   374篇
  2014年   449篇
  2013年   634篇
  2012年   534篇
  2011年   554篇
  2010年   458篇
  2009年   499篇
  2008年   608篇
  2007年   600篇
  2006年   586篇
  2005年   465篇
  2004年   435篇
  2003年   329篇
  2002年   317篇
  2001年   257篇
  2000年   199篇
  1999年   180篇
  1998年   126篇
  1997年   101篇
  1996年   57篇
  1995年   64篇
  1994年   46篇
  1993年   42篇
  1992年   21篇
  1991年   20篇
  1990年   20篇
  1989年   18篇
  1988年   19篇
  1987年   13篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有9699条查询结果,搜索用时 77 毫秒
281.
海峡两岸旅游管理比较研究   总被引:3,自引:0,他引:3  
中国大陆和台湾的旅游业都有良好的发展前景,由于体制和区情的不同,两地在旅游发展和旅游管理上有着诸多差异;由于文化上的同根同源,两地在旅游发展与管理上也存在着互补共融的关系.如何处理好竞争与合作、经济利益和可持续发展之间的关系,成为两岸学术界和旅游业工作者共同关注的课题.通过重点比较两岸在旅游管理方面的特点,找出了两岸的差异及差异存在的部分原因,以期能为两岸旅游业取长补短、互相促进、共同发展提供有价值的参考.  相似文献   
282.
The near-to-nature approach has been established as best practice for stormwater management. However, pollutant mobility within such systems and its impact on small receiving waters are partly unexplained. The study takes place in an urbanised headwater catchment in south-western Germany with an area of 0.4 km2. Runoff from roofs, roads, parking lots and gardens is collected in wells or trenches and stored in private and public dry detention basins. Accordingly, this study investigates pollutant input to a detention pond, removal efficiency and the associated effects on the receiving water.Grab samples with high temporal resolution of the receiving water (16 flood events with 315 samples and 41 baseflow samples), the three inflows of the detention basin and its outflow (four flood events with 64 samples) were taken. The outflow of the dry pond is recovered in the hydro- and chemographs of the receiving water. Runoff from roads with increased traffic volume caused the highest PAH inputs and runoff from the residential area showed the highest zinc concentrations, which partly infringe European Environmental Quality Standards. Yearly pollutant inputs (DOC, TSS, PAH, nutrients, metals) from the settlement into the tributary are reduced in the detention pond by up to 80%.  相似文献   
283.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
284.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
285.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
286.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   
287.
288.
289.
The loess landform in the Loess Plateau of China is with typical dual structure, namely, the upper smooth positive terrain and the lower cliffy negative terrain (P–N terrain for short). Obvious differences in their morphological feature, geomorphological mechanism, and hydrological process could be found in the both areas. Based on the differences, a flow‐routing algorithm that separately addresses the dual‐structure terrain would be necessary to encompass this spatial variation in their hydrological behaviour. This paper proposes a mixed flow‐routing algorithm to address aforementioned problems. First, the loess landform surface is divided into P–N terrains based on digital elevation models. Then, specific catchment area is calculated with the new algorithm to simulate the water flows in both positive and negative terrain areas. The mixed algorithm consists of the multiple flow‐routing algorithm (multiple‐flow direction) for positive areas and the D8 algorithm for negative areas, respectively. The approach is validated in two typical geomorphologic areas with low hills and dense gullies in the northern Shaanxi Loess Plateau. Four indices are used to examine the results, which show that the new algorithm is more suitable for loess terrain in simulating the spatial distribution of water accumulation, as well as in modeling the flow characteristics of the true surface by considering the morphological structures of the terrain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
290.
To develop an evidence base to help predict the impacts of land management change on flood generation, four experimental sites were established on improved grassland used for sheep grazing at the Pontbren catchment in upland Wales, UK. At each site, three plots were established where surface runoff was measured, supplemented by measurements of soil infiltration rates and soil and vegetation physical properties. Following baseline monitoring, treatments were applied to two of the plots: exclusion of sheep (ungrazed) and exclusion of sheep and planting with native broadleaf tree species (tree planted), with the third plot acting as a control (grazed pasture). Due to a particularly dry summer that occurred pre‐treatment, the soil hydrological responses were initially impacted by the effects of the climate on soil structure. Nevertheless, treatments did have a clear influence on soil hydrological response. On average, post‐treatment runoff volumes were reduced by 48% and 78% in ungrazed and tree‐planted plots relative to the control, although all results varied greatly over the sites. Five years following treatment application, near‐surface soil bulk density was reduced and median soil infiltration rates were 67 times greater in plots planted with trees compared to grazed pasture. The results illustrate the potential use of upland land management for ameliorating local‐scale flood generation but emphasise the need for long‐term monitoring to more clearly separate the effects of land management from those of climatic variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号