首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29689篇
  免费   5454篇
  国内免费   8045篇
测绘学   5055篇
大气科学   6325篇
地球物理   7067篇
地质学   12474篇
海洋学   4776篇
天文学   582篇
综合类   2398篇
自然地理   4511篇
  2024年   132篇
  2023年   357篇
  2022年   1027篇
  2021年   1251篇
  2020年   1410篇
  2019年   1673篇
  2018年   1401篇
  2017年   1571篇
  2016年   1611篇
  2015年   1788篇
  2014年   1948篇
  2013年   2246篇
  2012年   2030篇
  2011年   2060篇
  2010年   1692篇
  2009年   1946篇
  2008年   1956篇
  2007年   2074篇
  2006年   1945篇
  2005年   1710篇
  2004年   1546篇
  2003年   1294篇
  2002年   1194篇
  2001年   1009篇
  2000年   929篇
  1999年   841篇
  1998年   742篇
  1997年   675篇
  1996年   607篇
  1995年   520篇
  1994年   465篇
  1993年   405篇
  1992年   271篇
  1991年   220篇
  1990年   161篇
  1989年   112篇
  1988年   108篇
  1987年   71篇
  1986年   37篇
  1985年   40篇
  1984年   22篇
  1983年   5篇
  1982年   13篇
  1981年   8篇
  1980年   10篇
  1979年   17篇
  1978年   12篇
  1977年   5篇
  1976年   5篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
In this article, a new constitutive model for soils is proposed. It is formulated by means of plasticity, but in contrast to the precedent works, it presents a yield function describing a surface within the intergranular strain space. This latter is a state variable providing information of the recent strain history. An expression for the plastic strain rate has been proposed to guarantee the stress rate continuity. Under the application of medium or large strain amplitudes, the constitutive equation becomes independent of the intergranular strain and delivers a mathematical structure similar to some Karlsruhe hypoplastic models. Some simulations of monotonic and cyclic triaxial test are provided to evaluate and analyze the model performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
992.
An ability to quantify the reliability of probabilistic flood inundation predictions is a requirement not only for guiding model development but also for their successful application. Probabilistic flood inundation predictions are usually produced by choosing a method of weighting the model parameter space, but previous study suggests that this choice leads to clear differences in inundation probabilities. This study aims to address the evaluation of the reliability of these probabilistic predictions. However, a lack of an adequate number of observations of flood inundation for a catchment limits the application of conventional methods of evaluating predictive reliability. Consequently, attempts have been made to assess the reliability of probabilistic predictions using multiple observations from a single flood event. Here, a LISFLOOD‐FP hydraulic model of an extreme (>1 in 1000 years) flood event in Cockermouth, UK, is constructed and calibrated using multiple performance measures from both peak flood wrack mark data and aerial photography captured post‐peak. These measures are used in weighting the parameter space to produce multiple probabilistic predictions for the event. Two methods of assessing the reliability of these probabilistic predictions using limited observations are utilized; an existing method assessing the binary pattern of flooding, and a method developed in this paper to assess predictions of water surface elevation. This study finds that the water surface elevation method has both a better diagnostic and discriminatory ability, but this result is likely to be sensitive to the unknown uncertainties in the upstream boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
993.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
994.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
In this paper, an enhanced backtracking search algorithm (so-called MBSA-LS) for parameter identification is proposed with two modifications: (a) modifying the mutation of original backtracking search algorithm (BSA) considering the contribution of current best individual for accelerating convergence speed and (b) novelly incorporating an efficient differential evolution (DE) as local search for improving the quality of population. The proposed MBSA-LS is first validated with better performance than the original BSA and some other typical state-of-the-art optimization algorithms on a benchmark of soil parameter identification in terms of effectiveness, efficiency, and robustness. Then, the efficiency of the MBSA-LS is further illustrated by two representative cases: identifying soil parameters from both laboratory tests and field measurements. All comparisons demonstrate that the proposed MBSA-LS algorithm can give accurate results in a short time. Finally, to conveniently solve the problems of parameter identification, a practical tool ErosOpt for parameter identification is developed by integrating the proposed MBSA-LS and some other efficient algorithms for readers to conduct the parameter identification using optimisation algorithms.  相似文献   
996.
This paper deals with the numerical implementation of a cap model for unsaturated soils. It provides a brief review of existing cap model approaches, based on which an improved model formulated in terms of generalised effective stress and matric suction is derived and described in detail. Although the proposed model is a multisurface plasticity model, it can efficiently be implemented using only single‐surface projections because of the smoothness of the model, which is obtained by construction. Numerical algorithms are provided for these single‐surface stress projections, using a single‐equation approach whenever possible. The robustness of the utilised single‐equation approaches is enhanced by proposing problem‐fitted start‐up procedures based on investigations of the nonlinear projection equations. A comparison of the model response with extensive material test data is used to validate the model and to demonstrate the robust application of the approach to silty sands and low to medium plasticity clays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
997.
The use of loose spoils on steep slopes for surface coal mining reclamation sites has been promoted by the US Department of Interior, Office of Surface Mining for the establishment of native forest, as prescribed by the Forest Reclamation Approach (FRA). Although low‐compaction spoils improve tree survival and growth, erodibility on steep slopes was suspected to increase. This study quantified a combined KC factor (combining the effects of the soil erodibility K factor and cover management C) for low compaction, steep‐sloped (>20°) reclaimed mine lands in the Appalachian region, USA. The combined KC factor was used because standard Unit Plot conditions required to separate these factors, per Revised Universal Soil Loss Equation (RUSLE) experimental protocols, were not followed explicitly. Three active coal mining sites in the Appalachian region of East Tennessee, each containing four replicate field plots, were monitored for rainfall and sediment yields during a 14‐month period beginning June 2009. Average cumulative erosivity for the study sites during the monitoring period was measured as 5248.9 MJ·mm·ha?1·h?1. The KC ranged between 0.001 and 0.05 t·ha·h·ha?1·MJ?1·mm?1, with the highest values occurring immediately following reclamation site construction as rills developed (June – August 2009). The KC for two study sites with about an 18–20 mm spoil D84 were above 0.01 t·ha·h·ha?1·MJ?1·mm?1 during rill development, and below 0.003 t·ha·h·ha?1·MJ?1·mm?1 after August 2009 for the post‐rill development period. The KC values for one site with a 40 mm spoil D84 were never above 0.008 t·ha·h·ha?1·MJ?1·mm?1 and also on average were lower, being more similar to the other two sites after the rill development period. Based on an initial KC factor (Ke) measured during the first few storm events, the average C factor (Ce) was estimated as 0.58 for the rill development period and 0.13 for the post‐rill development period. It appears that larger size fractions of spoils influence KC and Ce factors on low‐compaction steep slopes reclamation sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
Mathematical modelling is a well‐accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost‐effective way to make this assessment, the added value brought by landscape‐specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were the following: (i) to present the adaptation of PHYSITEL (a geographic information system) to parameterize isolated and riparian wetlands; (ii) to describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) to evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules), and the added value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness‐of‐fit indicators and 14 water flow criteria. A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate the following: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics; and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g. typology and location) on watershed hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
999.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1000.
A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号