首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14812篇
  免费   1976篇
  国内免费   1740篇
测绘学   3839篇
大气科学   1275篇
地球物理   3622篇
地质学   4874篇
海洋学   1667篇
天文学   152篇
综合类   1168篇
自然地理   1931篇
  2024年   38篇
  2023年   170篇
  2022年   515篇
  2021年   625篇
  2020年   600篇
  2019年   733篇
  2018年   444篇
  2017年   628篇
  2016年   576篇
  2015年   598篇
  2014年   806篇
  2013年   912篇
  2012年   972篇
  2011年   955篇
  2010年   771篇
  2009年   840篇
  2008年   846篇
  2007年   1050篇
  2006年   934篇
  2005年   770篇
  2004年   712篇
  2003年   683篇
  2002年   495篇
  2001年   493篇
  2000年   432篇
  1999年   366篇
  1998年   330篇
  1997年   235篇
  1996年   211篇
  1995年   163篇
  1994年   165篇
  1993年   106篇
  1992年   88篇
  1991年   41篇
  1990年   58篇
  1989年   44篇
  1988年   39篇
  1987年   22篇
  1986年   21篇
  1985年   9篇
  1984年   17篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
荆思佳  肖薇  王晶苑  郑有飞  王伟  刘强  张圳  胡诚 《湖泊科学》2022,34(5):1697-1711
湖泊蒸发对气候变化非常敏感,是水文循环响应气候变化的指示因子,因此研究湖泊蒸发的控制因素,对于理解区域水文循环有重要意义.本文利用太湖中尺度涡度通量网避风港站观测数据校正JRA-55再分析资料,驱动CLM4.0-LISSS模型,并利用2012-2017年涡度相关通量数据和湖表面温度数据检验模型模拟蒸发结果,验证了该模型在太湖的适用性;估算了1958-2017年间太湖的湖面蒸发量,并利用Manner-Kendall趋势检验分析了湖面蒸发的变化趋势,寻找太湖实际蒸发的年际变化的主控因子.结果如下:校正后的JRA-55再分析资料模拟的太湖蒸发与观测值之间存在季节偏差,但是季节偏差在年尺度上相互抵消,再分析资料可用于年际尺度太湖蒸发变化的模拟;1958-2017年间太湖蒸发量以1977年为界,先下降(-3.6 mm/a),后增加(2.3 mm/a);多元逐步回归结果表明,向下的短波辐射是太湖1958-2017年间太湖蒸发变化的主控因子,向下的长波辐射、气温、比湿也对湖泊蒸发年际变化有一定影响,但是风速对蒸发量的年际变化影响不大.  相似文献   
962.
虚拟专用网技术在远程数据传输中的应用   总被引:1,自引:0,他引:1  
蒋宁 《地质与资源》2007,16(3):234-236,182
野外地质调查工作者作为远程用户需要与其所在的地质调查研究机构进行数据的安全传输.应用虚拟专用网络技术可以在使用公用网络进行数据传输时保证其安全.本文讨论了虚拟专用网的分类、关键技术,通过分析某地质研究所的网络拓扑,给出了一个虚拟专用网的解决方案,对其中的基于Windows Server 2003的虚拟专用网服务器进行了详细配置.  相似文献   
963.
商丹断裂带是一条多期次活动的大型断裂带,区域上也是大型金属矿的赋存带,对金属矿产具有重要的控制作用.文章以商丹断裂带(河南段)为研究对象,在基于孔沟至寨根一带构造剖面的宏观特征和显微构造特征解析的基础上,对研究区控矿构造和机理提出了新的认识.综合研究表明,商丹断裂带(河南段)具多期活动特征,整体呈现"正花状构造"样式....  相似文献   
964.
An adaptive substepping explicit integration scheme is developed for a porosity‐dependent hydro‐mechanical model for unsaturated soils. The model is referred to as the modified σ –Θ model in this paper, which features the employment of the subloading surface plasticity and the stress–saturation approach. On numerical aspects, convex/nonconvex subloading surfaces in the σ –Θ space may result in incorrect loading–unloading decisions during the integration. A new loading–unloading decision method is developed here to solve the problem and then embedded into the explicit integration scheme for the modified σ –Θ model. In addition, to enhance the accuracy of the explicit integration, local errors from both hydraulic and mechanical components are included in the error control for each substep. A drift correction method is also developed to ensure the state point lies on the subloading surface in the σ –Θ space within a set error level. The performance of the loading–unloading decision method for the modified σ –Θ model is discussed through comparing it with the conventional loading–unloading decision method. The importance of involving the hydraulic component in the error control is also demonstrated. The accuracy and efficiency of the proposed adaptive substepping explicit integration scheme for the modified p–Θ model are also studied via several numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
965.
Abstract

The objective of this study is to find the appropriate number and location of raingauges for a river basin for flow simulation by using statistical analyses and hydrological modelling. First, a statistical method is used to identify the appropriate number of raingauges. Herein the effect of the number of raingauges on the cross-correlation coefficient between areally averaged rainfall and discharge is investigated. Second, a lumped HBV model is used to investigate the effect of the number of raingauges on hydrological modelling performance. The Qingjiang River basin with 26 raingauges in China is used for a case study. The results show that both cross-correlation coefficient and modelling performance increase hyperbolically, and level off after five raingauges (therefore identified to be the appropriate number of rain-gauges) for this basin. The geographical locations of raingauges which give the best and worst hydrological modelling performance are identified, which shows that there is a strong dependence on the local geographical and climatic patterns.  相似文献   
966.
Abstract

In ice forecasting, a key problem is the forecast of freeze-up and break-up dates. Ice-water mechanics and the principle of heat-exchange were mainly adopted in previous research. However, the mathematical models in these studies are complex and many parameters are required in relation to upstream and/or downstream gauging stations. Moreover, too many assumptions or simplifications for these parameters and constraints directly lead to low accuracy of the models and limitations as to their practical applications. This paper develops a fuzzy optimization neural network approach for the forecast of freeze-up date and break-up date. The Inner Mongolia reach lies in the top north of the Yellow River, China. Almost every year ice floods occur because of its special geographical location, hydrometeorological conditions and river course characteristics. Therefore, it is of particular importance for ice flood prevention to forecast freeze-up date and break-up date accurately. A case study in this region shows that the proposed methodology may allow obtaining useful results.  相似文献   
967.
Combined open channel flow is encountered in many hydraulic engineering structures and processes, such as irrigation ditches and wastewater treatment facilities. Extensive experimental studies have conducted to investigate combined flow characteristics. Nevertheless, there is no simple relationship that can fully describe the velocity profiles in a turbulent flow. The artificial neural network (ANN) has great computational capability for solving various complex problems, such as function approximation. The main objective of this study is to evaluate the applicability of the ANN for simulating velocity profiles, velocity contours and estimating the discharges accordingly. The velocity profiles measured by an acoustic doppler velocimeter in the open channel of the Chihtan purification plant, Taipei, with different discharges at fixed measuring section and different depths are presented. The total number of data sets is 640 and the data sets are split into two subsets, i.e. training and validation sets. The backpropagation algorithm is used to construct the neural network. The results demonstrate that the velocity profiles can be modelled by the ANN, and the ANN constructed can nicely fit the velocity profiles and can precisely predict the discharges for the conditions investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
968.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
969.
Statistical tests and error analysis of cloud drift winds(CDWs) from the FY-2C satellite were made by using radiosonde observations.According to the error characteristics of the CDW,a bias correction using the thermal wind theory was applied in the data quality control.The CDW data were then assimilated into the GRAPES-meso model via the GRAPES-3DVar.A torrential rain event that occurred in northwestern China during 1-2 July 2005 was simulated.The results indicate that the CDW data were mainly distribute...  相似文献   
970.
Abstract

The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation (CV) and lag one autocorrelation. In this first part of the study, the marginal distributional properties of hydrological variables and the state scaling behaviour are investigated. Application of the ME principle under these very simple conditions results in the truncated normal distribution for small values of CV and in a nonexponential type (Pareto) distribution for high values of CV. In addition, the normal and the exponential distributions appear as limiting cases of these two distributions. Testing of these theoretical results with numerous hydrological data sets on several scales validates the applicability of the ME principle, thus emphasizing the dominance of uncertainty in hydrological processes. Both theoretical and empirical results show that the state scaling is only an approximation for the high return periods, which is merely valid when processes have high variation on small time scales. In other cases the normal distributional behaviour, which does not have state scaling properties, is a more appropriate approximation. Interestingly however, as discussed in the second part of the study, the normal distribution combined with positive autocorrelation of a process, results in time scaling behaviour due to the ME principle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号