首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   236篇
  国内免费   141篇
测绘学   94篇
大气科学   41篇
地球物理   349篇
地质学   424篇
海洋学   134篇
天文学   8篇
综合类   56篇
自然地理   69篇
  2024年   2篇
  2023年   6篇
  2022年   29篇
  2021年   30篇
  2020年   30篇
  2019年   39篇
  2018年   34篇
  2017年   47篇
  2016年   48篇
  2015年   61篇
  2014年   56篇
  2013年   52篇
  2012年   60篇
  2011年   67篇
  2010年   49篇
  2009年   42篇
  2008年   50篇
  2007年   57篇
  2006年   45篇
  2005年   41篇
  2004年   49篇
  2003年   34篇
  2002年   22篇
  2001年   30篇
  2000年   25篇
  1999年   33篇
  1998年   28篇
  1997年   20篇
  1996年   19篇
  1995年   16篇
  1994年   11篇
  1993年   17篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1175条查询结果,搜索用时 26 毫秒
991.
谱比法地震衰减层析反演方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
由于地下介质对地震波能量有强烈的吸收作用,降低了地震资料的分辨率以及地震资料处理、解释的精度,因此选择合适的参数对地层吸收衰减情况进行有效描述是对地下构造进行高分辨率、高精度处理及解释的有效途径。目前品质因子Q是对岩石弹性参数进行有效描述的重要参数之一。用品质因子Q来衡量地震波能量在介质中传播的吸收衰减情况,是目前提高地震资料分辨率的有效方法,同时也是提高含油气地层解释精度的有效途径。近些年,许多学者提出了多种计算Q值的方法,其中谱比法是在实际中应用最为广泛的Q值估计方法。本文在前人方法的基础上,对谱比法进行了改进,并结合走时层析方法反演Q值,充分利用谱比法在精度、稳定性等方面的优势以及走时层析方法计算效率高的优点,不仅可以提高反演的精度而且能够保证反演的稳定性,提高计算效率。通过模型试算证明谱比法衰减层析方法能有效估计Q值变化情况,具有较好的发展前景。   相似文献   
992.
地震正演模拟是逆时偏移和全波形反演中的核心问题之一,因为它们都需要高效、高精度地模拟波场正向和反向传播。为了提高数值模拟的精度,人们广泛采用高阶有限差分方法,但是大多数方法仅在空间上具有更高的精度,在时间上只有二阶精度。首先系统介绍时空域高精度交错网格有限差分方法的基本原理,然后利用模型验证方法的有效性,结果表明:时空域高精度交错网格有限差分方法拥有比常规交错网格有限差分方法更低的数值频散。   相似文献   
993.
转换波偏移可以利用纵横波波场信息,得到高分辨率的成像结果,从而为油藏描述提供高质量的地震资料.目前的研究主要是利用纵波波场信息进行偏移成像,然而,传统的纵波方法在复杂探区成像时具有一定的局限性.为此,本文在各向异性介质声波射线追踪算法的基础上,推导出各向异性介质转换波射线追踪方程,发展了一种转换波射线追踪算法;并将研究的追踪算法应用到偏移成像中,提出了一种各向异性VTI介质角度域转换波高斯束偏移成像方法.通过各向异性VTI介质断块模型和复杂构造模型试算,说明了本文方法的正确性和有效性.模型试算的结果表明,在考虑地下各向异性时,本文研究的方法具有更好的成像效果,提取的角道集结果可以为偏移速度分析提供依据.  相似文献   
994.
A stochastic ground‐motion simulation and modification technique is developed to generate energy‐compatible and spectrum‐compatible (ECSC) synthetic motions through wavelet packet characterization and modification in both frequency and time domains. The ECSC method significantly advances traditional spectral matching approaches, because it generates ground motions that not only match the target spectral accelerations, but also match Arias intensity build‐up and significant durations. The great similarity between the ECSC simulated motions and the actual recorded motions is demonstrated through one‐to‐one comparison of a variety of intensity measures. Extensive numerical simulations were also performed to validate the performance of the ECSC ground motions through nonlinear analyses of elasto‐plastic oscillators. The ECSC method can be easily implemented in the generalized conditional intensity measure framework by directly simulating a set of motions following a targeted distribution of multiple intensity measures. Therefore, the ECSC method has great potential to be used in performance‐based earthquake design and analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
995.
Soil moisture is an important variable in explaining hydrological processes at hillslope scale. The distribution of soil moisture along a hillslope is related to the spatial distribution of the soil properties, the topography, the soil depth, and the vegetation. In order to investigate the factors affecting soil moisture, various environmental data were collected from a humid forest hillslope in this study. Several factors (the wetness index; the contributing area; the local slope; the soil depth; the composition of sand, silt, and clay; the scaling parameter; the hydraulic conductivity; the tree diameter at breast height; and the total weighted basal area) were evaluated for their effect on soil moisture and its distribution over the hillslope at depths of 10, 30, and 60 cm. Both linear correlation analysis and empirical orthogonal function analysis indicated that the soil texture was a dominant factor in soil moisture distribution. The impact of soil hydraulic conductivity was important for all soil moisture ranges at a depth of 30 cm, but those at 10 and 60 cm were limited to very wet and dry conditions, respectively. The relationships of the various factors with the spatial variability of soil moisture indicated the existence of a threshold soil moisture that is related to the composition of the soil and the factors related to the distribution of water in the study area.  相似文献   
996.
This paper introduces a novel seismic isolation system based on metamaterial concepts for the reduction of ground motion-induced vibrations in fuel storage tanks. In recent years, the advance of seismic metamaterials has led to various new concepts for the attenuation of seismic waves. Of particular interest for the present work is the concept of locally resonant materials, which are able to attenuate seismic waves at wavelengths much greater than the dimensions of their unit cells. Based on this concept, we propose a finite locally resonant Metafoundation, the so-called Metafoundation, which is able to shield fuel storage tanks from earthquakes. To crystallize the ideas, the Metafoundation is designed according to the Italian standards with conservatism and optimized under the consideration of its interaction with both superstructure and ground. To accomplish this, we developed two optimization procedures that are able to compute the response of the coupled foundation-tank system subjected to site-specific ground motion spectra. They are carried out in the frequency domain, and both the optimal damping and the frequency parameters of the Metafoundation-embedded resonators are evaluated. As case studies for the superstructure, we consider one slender and one broad tank characterized by different geometries and eigenproperties. Furthermore, the expected site-specific ground motion is taken into account with filtered Gaussian white noise processes modeled with a modified Kanai-Tajimi filter. Both the effectiveness of the optimization procedures and the resulting systems are evaluated through time history analyses with two sets of natural accelerograms corresponding to operating basis and safe shutdown earthquakes, respectively.  相似文献   
997.
The problem of the through-soil coupling of structures has puzzled the researchers in the field for a long while, especially regarding the varied performance of identical, adjacent buildings in earthquakes. The phenomenon of structure-soil-structure interaction (SSSI) that has often been overlooked is recently being recognized: The possible effects in urban regions are yet to be thoroughly quantified. In this respect, the goal of this work was to rigorously investigate the interacting effects of adjacent buildings in a two-dimensional setting. Detailed finite element models of 5-, 15-, and 30-story structures, realistically designed, were used in forming building clusters on the viscoelastic half-space. Perfectly matched layers were used to properly define the half-space boundaries. The interaction of the structure and the soil medium because of the presence of spatially varying ground motion on the boundary of excavated region was considered. The effects of the foundation material and the distance between adjacent buildings on the structural behavior of the neighboring buildings were investigated using drift ratios and base shear quantities as the engineering demand parameters of interest. The effects of SSSI, first investigated in the frequency domain, was then quantified in the time domain using suites of appropriate ground motions in accordance with the soil conditions, and the results were compared with the counterpart SSI solution of a single building. The results showed that, for identical low-rise structures, the effects of SSSI were negligible. Yet, neglecting SSSI for neighboring closely spaced high-rise structures or building clusters with a large stiffness contrast was shown to lead to a considerable underestimation of the true seismic demands even compared with solutions obtained using the rigid base assumption.  相似文献   
998.
Spatial distribution of soil macroporosity was determined for a forest podzol from tension infiltrometer measurements at the soil surface. Surface‐derived macroporosity values were compared with point infiltration characteristics obtained from soil water content and soil water chemistry measurements during an experimental irrigation, and with parameters of a kinematic wave model applied to soil water content data. Macroporosity estimated by the tension infiltrometer ranged from 0·00087 to 0·0219% of soil volume, and infiltration at these two sites was dominated by propagation of a well‐defined wetting front through the soil profile and bypass flow via soil macropores, respectively. Infiltration at sites with intermediate macroporosities reflected a combination of these two processes, although results were inconclusive at one site owing to lateral flow at the base of the soil profile. There was no agreement between macroporosities estimated by the tension infiltrometer and the kinematic wave model. The maximum soil conductance parameter within the profile at a site, however, was related directly to the surface‐derived macroporosity. The partial agreement between surface‐derived macroporosity estimates and point infiltration characteristics shown here supports the use of tension infiltrometry as a rapid, non‐destructive method of assessing spatial variations in the relative contribution of macropore flow to the infiltration process. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
999.
提出了平面连通巷道的分层建模解决方案:对巷道中心线进行求交点、打断操作,建立结点-路径网络拓扑图;根据外层路径优先搜索原则,提取图中所有的"闭环",获取各中心线断面数据;对闭环的边界路径进行偏移、连接操作,生成分层轮廓线;对相邻轮廓线和顶、底轮廓线分别实现巷道体的网格三角化。实验结果表明,该算法充分利用结点-路径的拓扑关系以及各中心线的断面信息,实现简单,适用于同一中段中心线任意复杂情况下的连通巷道实体建模。  相似文献   
1000.
基于LiDAR点云数据的水体轮廓线提取方法研究   总被引:3,自引:0,他引:3  
提出一种基于机载激光雷达点云数据提取水体轮廓线的方法。采用双层格网模式提取较窄的水体;以朝向水体的边界点作为拟合轮廓线的关键点提取更精确的轮廓线。实验表明,该方法可以较好地提取水体轮廓线。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号