首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3321篇
  免费   671篇
  国内免费   1077篇
测绘学   365篇
大气科学   194篇
地球物理   833篇
地质学   2764篇
海洋学   258篇
天文学   68篇
综合类   219篇
自然地理   368篇
  2024年   12篇
  2023年   45篇
  2022年   140篇
  2021年   153篇
  2020年   145篇
  2019年   164篇
  2018年   156篇
  2017年   166篇
  2016年   185篇
  2015年   189篇
  2014年   209篇
  2013年   270篇
  2012年   279篇
  2011年   227篇
  2010年   221篇
  2009年   231篇
  2008年   186篇
  2007年   232篇
  2006年   239篇
  2005年   197篇
  2004年   206篇
  2003年   137篇
  2002年   123篇
  2001年   122篇
  2000年   117篇
  1999年   93篇
  1998年   97篇
  1997年   108篇
  1996年   75篇
  1995年   61篇
  1994年   75篇
  1993年   46篇
  1992年   37篇
  1991年   30篇
  1990年   25篇
  1989年   17篇
  1988年   17篇
  1987年   16篇
  1986年   10篇
  1985年   4篇
  1984年   3篇
  1980年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有5069条查询结果,搜索用时 31 毫秒
121.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
122.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
123.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
124.
The paper offers an analytical determination of the hydraulic properties of an unsaturated soil with reference to its retention curve, which describes the relationship between the volumetric water content and capillarity through matric suction. The analysis combines a particulate approach focused on the physics at the pore scale, including microstructural aspects, with a probabilistic approach where the void space and grain size are considered as random variables. In the end, the soil water characteristic curve of an unsaturated granular medium along a drying path can be derived analytically based on the sole information of particle size distribution. The analysis hinges on the tessellation of a wet granular system into an assemblage of tetrahedral unit cells revealing a pore network upon which capillary physics are computed with respect to pore throat invasion by a non-wetting fluid with evolving pendular capillary bridges. The crux of the paper is to pass from particle size probability distribution to a matching void space distribution to eventually reveal key information such as void cell and solid volume statistics. Making reasonable statistically based assumptions to render calculations tractable, the water retention curve can be readily constructed. Model predictions compare quite favourably with experimental data available for actual soils, especially in the high saturation range. Having a sound scientific basis, the model can be made amenable to address a variety of soils with a wider range of particle sizes.  相似文献   
125.
Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distribution of soil pipe collapse features. The study aimed to determine the connectivity of multiple soil pipe networks as well as determine pipe flow velocities during storm events. Fluorescein dye was injected directly into soil pipes at the upper most pipe collapse feature of four different hillslopes. Breakthrough curves (BTC) were determined by sampling multiple pipe collapse features downslope. The BTCs were used to determine the ‘average’ (centre of mass) and ‘maximum’ (first arrival) flow velocities. This study confirmed that these catchments contain individual continuous soil pipe networks that extend over 190 m and connect the upper most hillslopes areas with the catchment outlet. While the flow paths are continuous, the individual pipe networks consist of alternating reaches of subsurface flow through soil pipes and reaches of surface flow through gullies formed by pipe collapses. In addition, flow can be occurring both through the subsurface soil pipes simultaneous with surface flow generated by artesian flow from the soil pipes. The pipe flow velocities were as high as 0.3 m/s, which was in the range of streamflow velocities. These pipe flow velocities were also in the range of velocities observed in pinhole erosion tests suggesting that these large, mature soil pipes are still actively eroding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
126.
For slope condition of ground surface, the asymmetrical deformation about the vertical center line and the horizontal center line of the tunnel cross section can be formed. A unified displacement function expressed by the Fourier series is presented to express the asymmetrical deformation of the tunnel cross section. Five basic deformation modes corresponding to the expansion order 2 are a complete deformation mode to reflect deformation behaviors of the tunnel cross section under slope boundary. Such this complete displacement mode is implemented into the complex variable solution for analytically predicting tunneling-induced ground deformation under slope boundary. All of these analytical solutions are verified by good agreements of the comparison between the analytical solutions and finite element method results. A parameter study is carried out to investigate the influence of deformation modes of the tunnel cross section, geometrical conditions of the tunnel and the slope angle, and “Buoyancy effect” on the displacement field. Finally, the proposed method is consistent with measured data of the Hejie tunnel in China qualitatively. The presented solution can provide a simplified indication for evaluating the ground deformation under slope condition of ground surface.  相似文献   
127.
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test.  相似文献   
128.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   
129.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
130.
The paper presents an approach to predicting variation of a degree of saturation in unsaturated soils with void ratio and suction. The approach is based on the effective stress principle for unsaturated soils and several underlying assumptions. It focuses on the main drying and wetting processes and does not incorporate the effects of hydraulic hysteresis. It leads to the dependency of water retention curve (WRC) on void ratio, which does not require any material parameters apart from the parameters specifying WRC for the reference void ratio. Its validity is demonstrated by comparing predictions with the experimental data on four different soils taken over from the literature. Good correlation between the measured and predicted behaviour indirectly supports applicability of the effective stress principle for unsaturated soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号