首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7396篇
  免费   1145篇
  国内免费   1652篇
测绘学   127篇
大气科学   207篇
地球物理   802篇
地质学   4600篇
海洋学   740篇
天文学   2148篇
综合类   334篇
自然地理   1235篇
  2024年   38篇
  2023年   110篇
  2022年   326篇
  2021年   335篇
  2020年   310篇
  2019年   344篇
  2018年   297篇
  2017年   286篇
  2016年   270篇
  2015年   325篇
  2014年   331篇
  2013年   386篇
  2012年   345篇
  2011年   361篇
  2010年   301篇
  2009年   560篇
  2008年   447篇
  2007年   491篇
  2006年   547篇
  2005年   415篇
  2004年   417篇
  2003年   459篇
  2002年   370篇
  2001年   310篇
  2000年   313篇
  1999年   261篇
  1998年   280篇
  1997年   191篇
  1996年   144篇
  1995年   126篇
  1994年   134篇
  1993年   84篇
  1992年   85篇
  1991年   45篇
  1990年   47篇
  1989年   26篇
  1988年   21篇
  1987年   22篇
  1986年   10篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
251.
本文对位于西拉木伦河蛇绿岩带东段的九井子蛇绿岩中辉长岩脉以及蛇绿岩的围岩开展了锆石U-Pb定年。结果表明辉长岩的形成时代为(274.7±1.7)Ma,MSWD=0.079,属于早二叠世晚期;结合前人地层、古生物、岩浆岩等方面的资料,表明内蒙古东南部早二叠世晚期还可能存在大洋盆地。与九井子蛇绿岩呈断层接触的粉砂岩碎屑锆石年龄大致构成4个峰值:2350~2700 Ma、1700~2100 Ma、370~470 Ma和250~290 Ma,通过与区域构造热事件的对比分析,表明其物源主要来自中朝古板块的北缘。粉砂岩中最小的锆石年龄为晚二叠世末—早三叠世初((249±4.7)Ma),该年龄与内蒙古东南部海相地层消失的时代、安加拉植物群和华夏植物群出现混生的时代、西伯利亚和中朝古板块古纬度曲线收敛的时代以及区域上与碰撞相关的岩浆岩形成时代大致相同,据此本文认为九井子蛇绿岩的构造侵位时代应为晚二叠世末—早三叠世初,同时也可能代表古亚洲洋的最终闭合时代。  相似文献   
252.
大凌河河口地区晚更新世晚期以来的沉积环境演化   总被引:3,自引:1,他引:2  
对大凌河河口地区ZK3钻孔(孔深36.7 m)岩心开展粒度分析、AMS14C年代测定、有孔虫鉴定分析等综合研究,同时结合该地区5口工程钻孔的岩心以及部分测年资料,初步建立了大凌河河口地区晚更新世晚期以来典型的地层序列格架和时空对比框架,揭示该地区晚更新世晚期以来河道-湖沼-滨海/河口湾-浅海-三角洲的沉积演化过程。研究结果表明:大凌河河口地区在8 500 cal a BP前后开始接受海相沉积,并约在4 000 cal a BP之后进入三角洲沉积阶段;晚更新世晚期以来的海平面变化是大凌河河口沉积演化和沉积环境演变的主要控制因素;大凌河对现代辽河三角洲的形成和演化过程可能有较重要的影响。  相似文献   
253.
朱建荣  鲍道阳 《海洋学报》2016,38(12):11-22
河势是影响河口水动力和盐水入侵基本因子。本文利用20世纪50和70年代长江河口海图,数值化岸线和水深,结合2012年长江河口实测水深资料,分析长江河口自50年代以来的河势变化。长江河口为分汊河口,50年代仅为二级分汊,至70年代才形成三级分汊,四口入海的河势格局。70年代相比于50年代,北支淤浅严重,其上、中、下段容积变化分别为-64.13×106、-306.60×106和-639.27×106 m3,对应的变化率分别为-16.30%、-22.74%和-25.69%,均显著减小;南支的上、中、下段容积变化分别为-28.61×106、-35.69×106和126.43×106 m3,相应的变化率分别为-1.30%、-2.12%和4.36%;北港由于崇明浅滩和横沙浅滩的淤浅,下段容积明显减小,其上段和下段容积变化分别为109.21×106和-797.14×106 m3,对应的变化率分别为5.01%和-15.25%;南港上段由于河道淤浅容积减小,下段北由于铜沙浅滩被冲开形成北槽,导致水深变深、容积增加,其上段、下段北和下段南容积变化分别为-238.95×106、203.58×106和153.34×106 m3,对应的变化率分别为-8.96%、6.85%和3.26%。2012年相比于70年代,北支由于大量淤浅和围垦容积大幅减小,其上、中、下段容积变化分别为-199.06×106、-504.61×106和-654.12×106 m3,对应的变化率分别为-60.45%、-48.44%和-35.38%;南支的上、中、下段容积变化分别为92.34×106、193.01×106和-163.62×106 m3,相应的变化率分别为4.24%、11.73%和-5.40%;北港上段青草沙水库的围垦和下段横沙东滩的围垦造成面积和容积减小,其上段和下段容积变化分别为-154.64×106和-511.79×106 m3,对应的变化率分别为-6.75%和-11.55%;南港由于上段河道刷深而下段九段沙以及南汇边滩淤浅、围垦,导致其容积上段增加,下段减小,上段、下段北和下段南容积变化分别为136.39×106、-658.28×106和-1266.11×106 m3,对应的变化率分别为5.62%、-20.73%和-26.06%。  相似文献   
254.
The Cenozoic East African Rift System (EARS) is an exceptional example of active continental extension, providing opportunities for furthering our understanding of hydrocarbon plays within rifts. It is divided into structurally distinct western and eastern branches. The western branch comprises deep rift basins separated by transfer zones, commonly localised onto pre-existing structures, offering good regional scale hydrocarbon traps. At a basin-scale, local discrete inherited structures might also play an important role on fault localisation and hydrocarbon distribution. Here, we consider the evolution of the Central basin of the Malawi Rift, in particular the influence of pre-existing structural fabrics.Integrating basin-scale multichannel 2D, and high resolution seismic datasets we constrain the border, Mlowe-Nkhata, fault system (MNF) to the west of the basin and smaller Mbamba fault (MF) to the east and document their evolution. Intra basin structures define a series of horsts, which initiated as convergent transfers, along the basin axis. The horsts are offset along a NE–SW striking transfer fault parallel to and along strike of the onshore Karoo (Permo-Triassic) Ruhuhu graben. Discrete pre-existing structures probably determined its location and, oriented obliquely to the extension orientation it accommodated predominantly strike-slip deformation, with more slowly accrued dip-slip.To the north of this transfer fault, the overall basin architecture is asymmetric, thickening to the west throughout; while to the south, an initially symmetric graben architecture became increasingly asymmetric in sediment distribution as strain localised onto the western MNF. The presence of the axial horst increasingly focussed sediment supply to the west. As the transfer fault increased its displacement, so this axial supply was interrupted, effectively starving the south-east while ponding sediments between the western horst margin and the transfer fault. This asymmetric bathymetry and partitioned sedimentation continues to the present-day, overprinting the early basin symmetry and configuration. Sediments deposited earlier become increasingly dissected and fault juxtapositions changed at a small (10–100 m) scale. The observed influence of basin-scale transfer faults on sediment dispersal and fault compartmentalization due to pre-existing structures oblique to the extension orientation is relevant to analogous exploration settings.  相似文献   
255.
盐湖沉积记录了区域的气候和水文变化,是重要的古气候研究对象。年代学是盐湖古气候研究最重要的一项内容,是后续几乎所有工作的基础。盐湖沉积最常用的定年方法有14C定年、铀系定年、光释光(OSL)定年、古地磁定年。受各种定年方法自身的局限性以及盐湖沉积特有的沉积特征,存在不同方法测出的年龄差异较大的现象。准确测定盐湖沉积的年代还较为困难,一定程度制约了盐湖古气候研究的发展。由于盐湖沉积有机质含量低,易受现代碳的污染,其14C年代老于30 cal ka BP时,测出的年龄可能已饱和,需要谨慎对待。未来需要加强铀系定年和光释光定年等方法在盐湖沉积中的基础研究,并开发新的更好的测年方法,提高盐湖沉积测年的准确度,为深入开展盐湖古气候变化及成盐成矿规律研究提供坚实基础。  相似文献   
256.
利用深水区的二维、三维地震资料开展构造-沉积演化研究,鲁伍马盆地二叠纪—早侏罗世为冈瓦纳陆内—陆间裂谷活动期,发育河流—湖泊沉积;中侏罗世—早白垩世为马达加斯加漂移期,位于剪切型大陆边缘,发育海陆过渡相沉积;晚白垩世—渐新世为被动大陆边缘期,深水沉积广泛发育,重力流沉积延伸至戴维隆起带;中新世—第四纪为东非裂谷海域分支活动期,陆坡和凯瑞巴斯地堑发育深水重力流沉积。盆地垂向上形成"断—坳—断"结构,二叠纪—早侏罗世及中新世—现今发育两期明显的裂谷活动。马达加斯加漂移期的海相泥岩为深水区的主力烃源岩,古近纪的陆坡深水浊积砂体为主要储层。东非裂谷海域分支的断层活动沟通了下伏烃源岩,晚期断层不发育的西部陆坡成为主要的油气聚集区。  相似文献   
257.
258.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   
259.
The north trending rifts in southern Tibet represent the E–W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri–Duoqing Co graben is located at southern end of Yadong–Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluvio-lacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance (ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence (OSL) dating showed that moraine in the graben mainly developed from around 181–109 ka (late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8–15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15–8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake. Following by a geologically quiet period about 8–2.5 Ma, the paleolake expanded from east to west at around 8–6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last, the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.  相似文献   
260.
祁连山造山带新元古代—早古生代是板块构造演化与成矿的最重要时段,铁、铜多金属矿产资源丰富,成矿作用与新元古代—早古生代火山作用密切相关。根据矿床产出构造位置,将祁连山铁、铜多金属矿床分为4类:大陆裂谷型铁(铜)矿床、岛弧-岛弧裂谷型铜多金属矿床、陆缘裂谷型铜多金属矿床、扩张脊型铜矿床。镜铁山铁(铜)型矿床是新元古代大陆裂谷火山作用过程中热水沉积作用的产物;东沟铜矿为晚寒武世大洋扩张脊火山作用的产物;白银矿田铜多属矿床是奥陶纪与岛弧-岛弧裂谷火山作用的产物;石居里铜矿是晚奥陶纪弧后扩张脊有关火山作用的产物;红沟铜矿则是晚奥陶世陆缘裂谷火山作用的产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号