首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8252篇
  免费   1388篇
  国内免费   2857篇
测绘学   284篇
大气科学   482篇
地球物理   2052篇
地质学   6497篇
海洋学   356篇
天文学   12篇
综合类   415篇
自然地理   2399篇
  2024年   33篇
  2023年   91篇
  2022年   295篇
  2021年   373篇
  2020年   436篇
  2019年   483篇
  2018年   450篇
  2017年   332篇
  2016年   447篇
  2015年   470篇
  2014年   607篇
  2013年   671篇
  2012年   563篇
  2011年   656篇
  2010年   575篇
  2009年   631篇
  2008年   615篇
  2007年   616篇
  2006年   706篇
  2005年   517篇
  2004年   483篇
  2003年   418篇
  2002年   386篇
  2001年   311篇
  2000年   255篇
  1999年   201篇
  1998年   184篇
  1997年   154篇
  1996年   144篇
  1995年   77篇
  1994年   68篇
  1993年   54篇
  1992年   53篇
  1991年   37篇
  1990年   26篇
  1989年   21篇
  1988年   16篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
IntroductionNever before hasit beensotrue than now,thatlandis ali mitedresource.Population growth and as-sociated human activities,especially agricultureacross the world have not only led to land degrada-tion,but soil loss at rates that have pushed arablesoils to frontier thresholds.In the absence of arablesoil,the human environment would cease to groworeven demise(Ramet al.,2006).Studies haveshownthat in many regions of the world,runoff andsoil erosion differ withland-use type.Judson(1965)re…  相似文献   
992.
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (I) and a fluctuant water table (IV), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%–57% higher than that at static high water table (II and III). After nitrogen addition, however, highest CO2 emission was found at II and lowest emission at III. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 90211003) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KACX3-SW-332) Biography: YANG Ji-song (1978-), male, a native of Chengwu of Shandong Province, Ph.D. candidate, specialized in environmental ecology and wetland biogeochemistry. E-mail: yangjisong@neigae.ac.cn  相似文献   
993.
湖北省水土保持动态监测Web GIS系统的设计及实现   总被引:2,自引:0,他引:2  
利用Web GIS技术建立大区域的水土保持动态监测系统需要解决海量数据处理与显示、多源数据集成、大型数据库支持、桌面地图排版与专题图制作等技术问题,这里介绍的“湖北省水土保持动态监测Web GIS系统”有效地解决了建立实用型水土保持动态监测Web GIS系统所面临的一些共性问题。  相似文献   
994.
Fourteen popular, representative infiltration models, some physically based, some semi‐empirical and some empirical, were selected for a comparative evaluation. Using the Nash and Sutcliffe efficiency criterion, the models were evaluated and compared for 243 sets of infiltration data collected from field and laboratory tests conducted in India and the USA on soils ranging from coarse sand to fine clay. Based on a relative grading scale, the semi‐empirical Singh–Yu general model, Holtan model and Horton model were graded respectively as 6·52, 5·57 and 5·48 out of 10. The empirical Huggins and Monke model, modified Kostiakov and Kostiakov model were graded as 5·57, 5·30 and 5·22, respectively. The physically based non‐linear and linear models of Smith–Parlange were graded as 5·48 and 5·22, respectively. Other models were ranked lower than these models. All the models generally performed poorly in field tests on Georgia's sandy soils, except the Robertsdale loamy sand. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
995.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
996.
The TOPMODEL framework was used to derive expressions that account for saturated and unsaturated flow through shallow soil on a hillslope. The resulting equations were the basis for a shallow‐soil TOPMODEL (STOPMODEL). The common TOPMODEL theory implicitly assumes a water table below the entire watershed and this does not conceptually apply to systems hydrologically controlled by shallow interflow of perched groundwater. STOPMODEL provides an approach for extending TOPMODEL's conceptualization to apply to shallow, interflow‐driven watersheds by using soil moisture deficit instead of water table depth as the state variable. Deriving STOPMODEL by using a hydraulic conductivity function that changes exponentially with soil moisture content results in equations that look very similar to those commonly associated with TOPMODEL. This alternative way of conceptualizing TOPMODEL makes the modelling approach available to researchers, planners, and engineers who work in areas where TOPMODEL was previously believed to be unsuited, such as the New York City Watershed in the Catskills region of New York State. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
997.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
998.
This paper presents an assessment of the relationship between near-surface soil moisture (SM) and SM at other depths in the root zone under three different land uses: irrigated corn, rainfed corn and grass. This research addresses the question whether or not near-surface SM can be used reliably to predict plant available root zone SM and SM at other depths. For this study, a realistic soil-water energy balance process model is applied to three locations in Nebraska representing an east-to-west hydroclimatic gradient in the Great Plains. The applications were completed from 1982 through to 1999 at a daily time scale. The simulated SM climatologies are developed for the root zone as a whole and for the five layers of the soil profile to a depth of 1·2 m. Over all, the relationship between near-surface SM (0–2·5 cm) and plant available root zone SM is not strong. This applies to all land uses and for all locations. For example, r estimates range from 0·02 to 0·33 for this relationship. Results for near-surface SM and SM of several depths suggest improvement in r estimates. For example, these estimates range from − 0·19 to 0·69 for all land uses and locations. It was clear that r estimates are the highest (0·49–0·69) between near-surface and the second layer (2·5–30·5 cm) of the root zone. The strength of this type of relationship rapidly declines for deeper depths. Cross-correlation estimates also suggest that at various time-lags the strength of the relationship between near-surface SM and plant available SM is not strong. The strength of the relationship between SM modulation of the near surface and second layer over various time-lags slightly improves over no lags. The results suggest that use of near-surface SM for estimating SM at 2·5–30 cm is most promising. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
999.
Vegetation mosaics have commonly been thought to include two principal zones with distinctly different hydrology: relatively bare and impermeable runoff source zones (intergroves) and more strongly absorbing vegetated runon zones (groves). However, the data required to verify the internal uniformity of hydrologic response within these components of mosaic landscapes have been lacking, as have data on the nature (abrupt or gradational) of the boundaries between them. This study examines the degree of internal uniformity of key soil properties in the intergroves and groves of an Australian vegetation mosaic. Infiltration rates, soil water content, shear strength, bulk density and texture were determined at intervals of 1·5–2·5 m across several grove–intergrove cycles of an Australian banded shrubland. Results demonstrate that order‐of‐magnitude variability in soil infiltration rates can occur across intergroves, with lesser variation in groves. Patterns of infiltration are systematically related to slope position. Rates are relatively high in the uppermost parts of the intergrove, and fall to low values only in the lowermost intergrove where soils are mechanically strong. Infiltration rates increase rapidly from the lowermost intergrove to reach maxima within the upper to middle grove, from where rates once again decline toward the next intergrove. However, there is only a gradational change in infiltration rates across the pioneer zone–grove boundary, which is the sharpest of the mosaic boundaries when identified using plant cover data. Hydrologic models built on the presumption that mapped plant cover units are equally distinct hydrologically may need to be refined to incorporate the presence of systematic internal variability of infiltration rates and gradational change in soil hydraulic properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
1000.
Palynological analyses were completed for the A and B horizons of a forested Mollic Hapludalf to determine type, amount, and distribution of pollen and spores within the soil solum. Hypotheses regarding the origin of pollen and the mechanisms of its movement within soil bodies are also advanced. Pollen downwash within the mineral soil seems to be very slow and confined to the uppermost porous and most homogenized part of the solum. The predominance of non-arboreal pollen at depth was believed to be a result of deposition with the loess parent material. High arboreal pollen frequencies in the upper horizons coupled with increases in non-arboreal types at depth indicate gradual ongoing mixing from the present vegetation into the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号