排序方式: 共有25条查询结果,搜索用时 14 毫秒
11.
High accuracy seamless positioning is required to support a vast number of applications in varying operational environments. Over the last few years, the global positioning system (GPS) has become the de facto technology for positioning applications. However, its performance is limited in indoor and dense urban environments due to multipath as well as signal attenuation and blockage. A number of techniques integrating GPS with other positioning technologies have been developed to address the limitations of standalone GPS in these difficult environments. While most of the developed techniques cover the outages of GPS in such environments, they do not provide acceptable performance, in terms of positioning accuracy, especially for some mission-critical (e.g. safety) applications. This paper proposes a tightly coupled (i.e. in the measurement domain) GPS/WiFi integration method which, in addition to addressing GPS outages, improves the overall positioning accuracy to the meter-level, thus satisfying the requirements of a number of location based services and intelligent transport systems applications. The performance of the proposed GPS/WiFi integration method is assessed for a number of scenarios in a simulation environment for an identified dense urban area in London, UK. 相似文献
12.
针对目前利用WiFi信号进行室内定位实时精度较低的问题,该文提出了一种改进的K最近邻算法。由于室内人体走动对于WiFi信号的不规律干扰,使得室内实时定位的精度带有很大的不确定性。为了实时地消除外界干扰带来的误差,改进的K最近邻算法增加了外部节点来监测周围WiFi信号的强度变化,通过将获取的信号强度与指纹数据库中对应节点的信号强度比对,获取差值,并应用于节点周围的客户端,来实时地校正客户端的定位结果。利用此算法在Android平台上的实验表明,该算法定位简单,可以较为明显地改善节点周围2.4m范围内的实时定位精度,使平均精度能提高0.8~1m左右。 相似文献
13.
针对基于指纹库的WiFi定位存在的点位重积、回跳,行人航位推算算法中误差积累的问题,提出了并实现了通过一种自适应加权扩展卡尔曼滤波对两种定位算法进行松耦合。首先给出了WiFi无线定位和行人航位推算进行位置解算的原理,采用渐消因子的自适应加权EKF算法实现了两者的融合,最后通过实测数据验证算法的有效性。试验表明,该方法在保持了WiFi定位单次定位高精度的特性的同时,继承了航位推算的连贯性,不仅减少了WiFi定位所存在的重复堆积点以及回跳点,并在一定程度上削弱了行人航位推算所存在的积累误差,提高了融合算法的效率,大大提高了室内定位的精度与稳定性。 相似文献
14.
针对传统的基于反向传播(BP)神经网络室内定位算法存在着低精度和慢收敛问题,且考虑到室内环境复杂,通常存在多径效应,无法使用信号强度衰减测距模型进行精确定位,提出一种改进的人工鱼群优化的BP神经网络WiFi指纹室内定位算法.利用人工鱼群觅食和寻优方式来提高全局寻优搜索的速度和能力,采用改进的人工鱼群算法(IAFSA)优化选取室内定位BP神经网络的权值和阈值,有效避免了传统BP神经网络的预测值易陷入局部最优的缺点,同时利用高斯滤波对信号进行去噪处理,建立采样点获取到的信号强度值(RSSI)与位置坐标的关系.实验结果证明所提方法与传统的BP神经网络方法相比,平均定位误差减少了0.75 m,平均定位精度提高32.2%,提高了定位可靠性,算法具有更好的稳定性. 相似文献
15.
16.
融合地磁/WiFi/PDR的自适应粒子滤波室内定位 总被引:1,自引:0,他引:1
随着国民经济的快速发展,人们在室内活动的时间越来越长,室内空间环境也越来越复杂,对室内环境的位置与导航服务的需求也越来越高。由于地磁信号具有稳定性的特点,且Wi Fi技术已得到广泛部署,融合使用地磁和Wi Fi定位具有一定的优势。因此,本文基于Android系统智能手机作为接收设备,融合地磁、Wi Fi及行人航迹推算(PDR)技术,通过自适应粒子滤波模型和随机抽样一致性算法对采集的信号进行处理。试验证明,地磁、Wi Fi、PDR三者融合进行室内定位的方法与其他单类方法相比,实现了将室内定位精度的误差最小降低到1.02 m。 相似文献
17.
室内定位需求急剧增加,普及的智能手机带来了解决问题的一种方法。本文提出了一种基于智能手机的粒子滤波室内融合定位方法。利用三轴加速计和三轴罗盘等微机电系统(micro-electromechinical system, MEMS)传感器数据估计目标的运动状态信息,利用WiFi数据更新运动状态,实现融合定位。室内动态环境下实验结果表明,融合定位方法平均定位误差小于2 m,其有效利用智能手机平台获取多种传感器数据,很好地结合了行人航迹推算方法和K加权最近邻方法的优势,在定位精度和稳健性方面均有良好表现。 相似文献
18.
无线局域网络(WLAN)是一种全新的无线信号传输平台,该文在总结目前无缝定位与导航技术的研究现状、分析存在的问题和发展趋势的基础上,提出了联合GPS和无线局域网络的组合定位方法,以实现室内外的无缝定位与导航.同时,在深入研究卫星导航定位和无线传感器网络定位原理与算法基础上,针对定位环境的不同,提出了无缝定位的解决方案、转换机制和切换策略,并以WiFi网与GPS组合定位算法为例,进行了详细分析和深入讨论,所用算法可以实现无GPS、少于4颗可用卫星以及GDOP值不满足定位情况下的定位,与单独WiFi网络定位算法相比,该算法可以提高定位精度. 相似文献
19.
基于WiFi的定位技术中,对接收信号强度(received signal strength indication, RSSI)的平稳性要求较高,本文在分析室内WiFi信号强度统计特征的前提下,以Friis传输方程和运动学方程为基础,利用抗差卡尔曼滤波方法估计信号强度,达到了信号平滑的目的,从源头上为WiFi定位精度提供保障,定位结果表明采用本文所提方法可以明显提高定位精度。 相似文献
20.
针对室内WiFi指纹位置定位中取RSS的平均值作为其定位特征值在室内环境的复杂性和动态性不能准确地反映RSS信号真值的问题,以及卡尔曼滤波和粒子滤波算法等用于RSS信号的提取只针对线性噪声或非线性噪声中的一种,在室内动态多变、干扰复杂多样的环境下鲁棒性不理想的问题,结合卡尔曼滤波和粒子滤波,提出一种用于RSS提取的改进的粒子滤波算法。给出了算法实现的步骤,并且在不同地点不同环境条件(静态环境和动态环境)下分别进行了指纹定位在线端的数据采集实验。实验结果表明:基于改进粒子滤波的RSS提取算法的定位精度和鲁棒性均优于均值算法、卡尔曼滤波算法、粒子滤波算法等已有算法。 相似文献