排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Many underwater intervention tasks are today performed using manned submersibles or remotely operated vehicles in teleoperation mode. Autonomous underwater vehicles are mostly employed in survey applications. In fact, the low bandwidth and significant time delay inherent in acoustic subsea communications represent a considerable obstacle to remotely operate a manipulation system, making it impossible for remote controllers to react to problems in a timely manner.Nevertheless, vehicles with no physical link and with no human occupants permit intervention in dangerous areas, such as in deep ocean, under ice, in missions to retrieve hazardous objects, or in classified areas. The key element in underwater intervention performed with autonomous vehicles is autonomous manipulation. This is a challenging technology milestone, which refers to the capability of a robot system that performs intervention tasks requiring physical contacts with unstructured environments without continuous human supervision.Today, only few AUVs are equipped with manipulators. SAUVIM (Semi Autonomous Underwater Vehicle for Intervention Mission, University of Hawaii) is one of the first underwater vehicle capable of autonomous manipulation.This paper presents the solutions chosen within the development of the system in order to address the problems intrinsic to autonomous underwater manipulation. In the proposed approach, the most noticeable aspect is the increase in the level of information transferred between the system and the human supervisor.We describe one of the first trials of autonomous intervention performed by SAUVIM in the oceanic environment. To the best knowledge of the authors, no sea trials in underwater autonomous manipulation have been presented in the literature. The presented operation is an underwater recovery mission, which consists in a sequence of autonomous tasks finalized to search for the target and to securely hook a cable to it in order to bring the target to the surface. 相似文献
2.
This paper addresses the combined problem of trajectory planning and tracking control for underactuated autonomous underwater vehicles (AUVs) on the horizontal plane. Given a smooth, inertial, 2D reference trajectory, the planning algorithm uses vehicle dynamics to compute the reference orientation and body-fixed velocities. Using these, the error dynamics are obtained. These are stabilized using backstepping techniques, forcing the tracking error to an arbitrarily small neighborhood of zero. Simulation results for a constant velocity trajectory, i.e. a circle, and a time-varying velocity one, i.e. a sinusoidal path, are presented. The parametric robustness is considered and it is shown that tracking remains satisfactory. 相似文献
3.
4.
5.
多径信号是GPS定位的主要误差源之一。码和载波跟踪环是GPS接收机的重要组成部分,它们直接决定了接收机的性能,因此当前多径消除技术研究的核心即是从跟踪环内部着手研究。本文仔细分析了GPS接收机信号跟踪环以及多径信号对跟踪精度的影响,对伪距码与载波相位多径误差进行了比较,并且通过仿真结果和图表阐明了码和载波相位多径误差之间的协同关系。 相似文献
6.
V. V. Andreyanov 《Experimental Astronomy》1999,9(3):103-117
Space VLBI's highly dynamic geometry, ability to access the space radio telescope (SRT) only via distant communication links, very expensive mission cost, and scientific goals define the basic strategy and scenario for mission control and radio source observations. These are very different from those for ground-based VLBI. Space VLBI strategy must be based on the limitation of SRT repointings, periodic orbit determination before astronomical observations, preliminary preparation and checking of space and ground facilities, and recommended observing sequences and modes. A control and observation scenario is considered for an in-orbit-checkout period, and also for short (1-orbit – 1 week) and long (1 week and more) observation sessions. Examples and illustrations are given for the Radioastron space VLBI Project. 相似文献
7.
The aim of this paper is to show a climatology of Mesoscale Convective Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996–2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between convective and non-convective contribution. Secondly, the convective cells were identified using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the convective cells (3D) were associated with the 2D structures (convective rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were identified as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with convection. The average features of those MCS show an area of about 25000 km2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a convective train effect. 相似文献
8.
9.
采用球面几何的方法推导轴系位置误差对地平式望远镜指向、跟踪精度影响的计算模型.介绍2米级地平式望远镜轴系误差检测及数据处理方法.通过对目标星体指向、跟踪仿真,得到轴系位置误差对指向、跟踪精度影响规律,为轴系精度及轴系位置要求提供理论依据,并为后续控制修正提供参考模型. 相似文献
10.