Water samples (springs, creeks, mine adits) from different former mining districts of the Harz Mountains and the nearby Kupferschiefer (copper shale) basin of Sangerhausen were analysed for major ions and trace metals. Due to more intensive water rock interactions including the ore minerals, the mine water concentrations of main components and trace metals are generally higher compared to non mining affected surface waters of the mountain range. Furthermore, the content of major ions in mine water is enriched by mixing processes with saline waters from Permian layers in the Kupferschiefer district and at the deeper levels of the mines in the Upper Harz Mountains. The waters of the different mining districts can be distinguished by trace metal occurrences and concentrations derived from the different ore bodies. Water from the Kupferschiefer mines shows the highest Na, Cl, Cu, Mo and U concentrations, whereas a combination of elevated As and Se concentrations is typical for most of the samples from the mines around St. Andreasberg. However, there are exceptions, and some water samples of all the investigated mining districts do not follow these general trends. Despite the influence of mining activities and ore mineralisation, hydrochemical effects due to rain water dilution can be seen in most of the waters. According to the elevation of the mountain range, higher precipitation rates decrease the ion concentrations in the waters of springs, creeks and mine adits. 相似文献
The use of membranes is a widely employed, versatile, and effective separation process. One of the limiting aspects in applying microfiltration (MF) for wastewater treatment is that of problems with membrane fouling and consequent flux reduction. Membrane fouling occurs by the irreversible deposition of retained particles, colloids, macromolecules, salts, etc. at the membrane surface and/or inside the membrane. The predominant fouling mechanisms observed with MF membranes are classified as three categories: the build-up of a cake layer on the membrane surface, blocking of membrane pores, and adsorption of fouling material on the membrane surface or in the pore walls. Although many techniques have been developed to overcome fouling, studies on membrane cleaning still seem to be insufficient for practical membrane filtration systems. Current membrane cleaning technologies include hydraulic, chemical, and mechanical methods. Ultrasound (US) has been widely used as a method of cleaning materials because of the cavitation phenomenon. In this study, US cleaning technique was applied to removing the fouling of polyvinglidenefluoride (PVDF) MF membrane, which was used to treat yeast cell and isolated soybean protein (ISP) solution, respectively. The US employed 40 kHz frequency and the output power of 1.43-2.85 W/cm^2. The evolution of the cleaning effect is followed by the measurements of the flux recovery rate (FRstat) and the cleaning time cycle. Results showed that the membrane property, which was fouled by yeast cell solution, could be recovered by water cleaning with US irradiation. And the cleaning time with the same FRstat decreased with the increase of US intensity. 相似文献
The trace fossil assemblages of the ice-marginal shallow marine sediments of the Talchir Formation (Permo-Carboniferous), Raniganj Basin, India, record the adverse effect of extreme climatic conditions on biota. The glaciomarine Talchir succession starts with glacial sediments near the base and gradually passes to storm-laid shallow marine sediments up-section. The fine-grained storm sediments host abundant trace fossils. Although the studied ichnites characteristically show marginal marine affinity, the ichnodiversity and bioturbation intensity suggest a lower than normal shallow marine trace fossil population. Further, endobenthic annelids, worms and crustaceans are identified as dominant trace-makers.
Sediment reworking near the ice-grounding line, extremely cold climate, high-energy storm sedimentation and anomalous water chemistry hindered organic colonization during the early phases of Talchir sedimentation. Later, climatic amelioration ushered in a favourable ambience for the benthic community to colonize within or beyond the storm weather wave-base in the outer shoreface–shelf environment. Fluctuating storm energy dominantly controlled the availability and influence of other environmental stimuli in the environment, and thus, governed the distribution, abundance and association of the studied ichnites. However, impoverished ichnodiversity, sporadic distribution of the traces, overall smaller burrow dimensions, absence of body fossils, dominance of worms and annelids as trace-makers all indicate a stressed environmental condition, induced by cold climate and lowered marine salinity due to influx of glacier melt-out freshwater during climatic amelioration, in the Permo-Carboniferous ice-marginal sea. 相似文献
Abstract The Nankai Trough, off southwest Japan, is one of the best sites for the study of geomorphic characteristics of a clastic accretionary prism. A recent multibeam survey over the central and eastern parts of the Nankai accretionary prism has revealed a large variation of the topography along the trough axis. Analysis of the bathymetric data suggests the existence of prism deformational features of different scales, such as depressions, embayment structures and cusps. These structures are the results of slope instability caused by basement relief of subducted oceanic plate. Unstable slopes recover by new accretion and development of a low angle thrust. Small-scale deformation due to the subduction of a small isolated seamount is then adjusted to the regional trend. By contrast, a 30 km indentation of the wedge observed in the eastern part of the Nankai Trough, the Tenryu Cusp, has seemed to retain its geometry. The subducted Philippine Sea plate has deformed greatly near the eastern end of the Nankai Trough, because of the collision between the Izu-Ogasawara (Bonin) arc and central Japan. Therefore, the indentation may be the result of the continuous subduction of a basement high, such as the Zenisu Ridge, which has been formed under north-south compression due to the arc-arc collision. 相似文献