全文获取类型
收费全文 | 55篇 |
免费 | 14篇 |
国内免费 | 14篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 5篇 |
地球物理 | 22篇 |
地质学 | 36篇 |
海洋学 | 7篇 |
天文学 | 1篇 |
综合类 | 2篇 |
自然地理 | 3篇 |
出版年
2023年 | 3篇 |
2022年 | 5篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 4篇 |
2014年 | 3篇 |
2013年 | 6篇 |
2012年 | 7篇 |
2011年 | 2篇 |
2010年 | 1篇 |
2009年 | 4篇 |
2008年 | 6篇 |
2007年 | 2篇 |
2006年 | 6篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1990年 | 3篇 |
1987年 | 1篇 |
排序方式: 共有83条查询结果,搜索用时 15 毫秒
31.
经过对不同时期洪积物的成因、物质组成、结构、构造等的分析,以及对第一期洪积物内能否成洞的试验性模拟开挖、观察、分析,并在大量室内外物理力学性质试验的基础上,分析、量化出洪积物内成洞工程地质特性参数。在精心设计和施工下,深厚洪积物内开挖大跨度洞室顺利成功。 相似文献
32.
C. M. Gibson-Poole L. Svendsen J. Underschultz M. N. Watson J. Ennis-King P. J. van Ruth E. J. Nelson R. F. Daniel Y. Cinar 《Environmental Geology》2008,54(8):1583-1606
Geological storage of CO2 in the offshore Gippsland Basin, Australia, is being investigated by the Cooperative Research Centre for Greenhouse Gas Technologies
(CO2CRC) as a possible method for storing the very large volumes of CO2 emissions from the nearby Latrobe Valley area. A storage capacity of about 50 million tonnes of CO2 per annum for a 40-year injection period is required, which will necessitate several individual storage sites to be used
both sequentially and simultaneously, but timed such that existing hydrocarbon assets will not be compromised. Detailed characterisation
focussed on the Kingfish Field area as the first site to be potentially used, in the anticipation that this oil field will
be depleted within the period 2015–2025. The potential injection targets are the interbedded sandstones of the Paleocene-Eocene
upper Latrobe Group, regionally sealed by the Lakes Entrance Formation. The research identified several features to the offshore
Gippsland Basin that make it particularly favourable for CO2 storage. These include: a complex stratigraphic architecture that provides baffles which slow vertical migration and increase
residual gas trapping and dissolution; non-reactive reservoir units that have high injectivity; a thin, suitably reactive,
lower permeability marginal reservoir just below the regional seal providing mineral trapping; several depleted oil fields
that provide storage capacity coupled with a transient production-induced flow regime that enhances containment; and long
migration pathways beneath a competent regional seal. This study has shown that the Gippsland Basin has sufficient capacity
to store very large volumes of CO2. It may provide a solution to the problem of substantially reducing greenhouse gas emissions from future coal developments
in the Latrobe Valley. 相似文献
33.
This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable. 相似文献
34.
Bong Ju Kim 《Ocean Engineering》2010,37(13):1159-1168
The aim of this study was to evaluate the load characteristics of steel and concrete tubular members under jet fire, with the motivation to investigate the jet fire load characteristics in FPSO topsides. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) (
[Paik and Czujko, 2009] and [Paik, 2010]). To obtain reliable load values, jet fire tests were carried out in parallel with a numerical study. Computational fluid dynamics (CFD) simulation was used to set up an adiabatic wall boundary condition for the jet fire to model the heat transfer mechanism. A concrete tubular member was tested under the assumption that there is no conduction effect from jet fire. A steel tubular member was tested and considered to transfer heat through conduction, convection, and radiation. The temperature distribution, or heat load, was analyzed at specific locations on each type of member. ANSYS CFX, (2008) and KFX, 2007 codes were used to obtain similar fire action in the numerical and experimental methods. The results of this study will provide a useful database to determine design values related to jet fire. 相似文献
35.
36.
四川盆地三叠系地下卤水分布广泛,品质优良,是我国开采利用最早,工业价值最高的卤水资源。研究表明,地下卤水储层为低孔隙低渗透致密岩石,不利于卤水的运聚,而后期构造形成的断裂和裂缝控制了卤水的富集作用。 相似文献
37.
基于双程波动方程的逆时偏移被认为是目前最好的偏移成像技术,更适合于复杂构造成像.然而,大计算量和大存储量使得逆时偏移的计算成本很高而无法用于大数据量的地震成像.本文分析了目前常用的存储策略,并分别在空间和时间上对存储策略进行了研究:空间上,根据有限差分格式,在边界存储策略的基础上通过修改波场逆向传播的边界条件,提出了有效边界存储策略.该策略可在不增加任何计算量的情况下大幅降低逆时偏移对存储量的需求;在时间上,使用checkpointing技术对有效边界存储策略进行了改进,使叠前逆时偏移在增加少量计算量的情况下进一步降低存储量需求.Marmousi模型测试结果表明了有效边界存储策略的有效性和优越性. 相似文献
38.
39.
Bahattin Çetindağ 《Environmental Geology》2005,47(2):268-282
The study area is 35 km east of the city center of Mu, Turkey. The rock units in the area include Paleozoic Bitlis Metamorphites, Cenozoic flysch and Solhan Volcanities and Pliocene formations. A long-term discharge change was monitored in the Karasu spring. The amount of water discharged by the spring during June 3 and October 11, 2002 was 7.18×106 m3 while its storage capacity during May 26 and November 11, 2002 was 4.42×106 m3.NH4 – N, NO2 – N, NO3 – N, total PO4 – P, SO4 and total organic carbon (TOC) contamination were determined in the recharge area of the spring and other well and spring waters in the vicinity. NH4 – N, NO2 – N, NO3 – N, total PO4 – P, SO4 and total organic carbon contamination around the Budak, ivbai, Gölbai, Sazlikbai and Altinova villages are well above the drinking water standards of the Turkish Standard Institute (TSE) and World Health Organization (WHO) (1984). Similarly, water samples of K4, K5 and K6 branches of the Karasu spring and S1, S2, S3 and S4 points in the swamp area yielded concentrations much more than limit values. 相似文献
40.
Stream water infiltration, bank storage, and storage zone changes due to stream-stage fluctuations 总被引:3,自引:0,他引:3
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable. 相似文献