首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  国内免费   4篇
测绘学   1篇
大气科学   8篇
地球物理   4篇
地质学   28篇
综合类   2篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
11.
利用NCEP/NCAR再分析资料和PREC-L(Precipitation Reconstruction over Land)降水资料分析了1948/1949~2008/2009年冬季斯堪的纳维亚(SCAND)遥相关型的年代际变化,并讨论了这次年代际变化前后SCAND型的不同时空特征、气候影响及其维持机制。结果表明,SCAND型在1979年前后发生了明显的年代际突变,其500 hPa高度场上的欧洲中心和西伯利亚中心在1979年之后均向东南方向移动,但斯堪的纳维亚半岛附近的中心位置没有明显变化。与此相对应,1979年之后SCAND型对北半球气温的影响有很大加强,主要表现为其正(负)位相引起的极区增温范围明显扩大,欧亚大陆北部的温度负(正)中心显著向东南方向延伸,甚至可以影响到我国长江流域和日本的温度变化。1979年之后,SCAND型正(负)位相可以引起欧亚大陆沿60°N左右纬度带的降水显著减少(增加),这与1979年之前SCAND型主要引起乌拉尔山以西地区的降水变化有所不同。对准地转位势倾向方程的诊断表明,SCAND型在1979年前后的年代际变化基本可以用异常定常波引起的涡度强迫、异常定常波与气候态定常波相互作用引起的涡度强迫以及高频瞬变波引起的涡度强迫三者的变化来解释。  相似文献   
12.
New radiocarbon dates from Finnish subfossil mammoth material (Mammuthus sp.), transported by glacial ice, range in age from ca. 32000 to ca. 22500 yr BP. These results suggest that there was a larger ice-free area in Fennoscandia during the Middle Weichselian than previously assumed. In addition, two dates are also presented for bones found in clay with a different transport history. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
13.
14.
The structural evolution of a part of the late Precambrian Baltoscandian passive margin just before the inception of seafloor spreading is described, recording the change from deformation by faulting to dominantly magmatic extension of the crust. The allochthon of the Scandinavian Caledonides contains the imbricated passive margin of continental Baltica overlain by various exotic terranes. The Sarektjåkkå Nappe in the Seve Nappe Complex, which contains the outer parts of Baltica's passive margin, consists of sedimentary rocks, occurring as screens between Vendian (573±74 Ma) diabase dykes. These dykes constitute 70–80% of the nappe and locally form sheeted dyke complexes. The Sarektjåkkå Nappe largely escaped penetrative Caledonian deformation and preserves igneous, metamorphic and structural elements that are linked to the evolution of a pre-Caledonian rift to a passive continental margin. Extensional deformation before dyke emplacement is recorded by normal faults, pull-apart structures and folds. Unconformities, dykes affected by brittle deformation, and fluidization of sediments during dyke emplacement indicate close relations between the deposition of sediments, extensional deformation and dyke emplacement. The Sarektjåkkå Nappe is compared with other parts of the Baltica's passive margin and its tectonic evolution is discussed.  相似文献   
15.
The North Atlantic Oscillation (NAO) is one of the modes of climate variability in the North Atlantic region. The atmospheric circulation during the winter season in this region commonly displays a strong meridional (north–south) pressure contrast, with low air pressure (cyclone) centred close to Iceland and high air pressure (anticyclone) near the Azores. This pressure gradient drives the mean surface winds and the mid‐latitude winter storms from west to east across the North Atlantic, bringing mild moist air to northwest Europe. The NAO index is based on the difference of normalised sea‐level pressures (SLP) between Ponta Delgada, Azores and Stykkisholmur, Iceland. The SLP anomalies at these stations are normalised by division of each monthly pressure by the long‐term (1865–1984) standard deviation. Interannual atmospheric climate variability in northwest Europe, especially over Great Britain and western Scandinavia has, during the last decades, been attributed mainly to the NAO, causing variations in the winter weather over the northeast North Atlantic and the adjacent land areas. A comparison between the NAO index and the winter (December–March) precipitation between ad 1864 and 1995 in western Norway shows that these are strongly linked (correlation coefficient 0.77). Variations in the NAO index are also reflected in the mass balance records of glaciers in western Scandinavia. The NAO index is best correlated with mass balance data from maritime glaciers in southern Norway (e.g. Ålfotbreen R2 = 0.51). The record of Holocene (last ca. 11 500 cal. yr) glacier variations of maritime glaciers in western Scandinavia is thus a proxy of pre‐instrumental NAO variations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
16.
Mineralogical, isotopic, geochemical and geochronological evidencedemonstrates that the Friningen body, a garnet peridotite bodycontaining garnet pyroxenite layers in the Seve Nappe Complex(SNC) of Northern Jämtland, Sweden, represents old, certainlyProterozoic and possibly Archean, lithosphere that became incorporatedinto the Caledonian tectonic edifice during crustal subductioninto the mantle at c. 450 Ma. Both garnet peridotite and pyroxenitecontain two (M1 and M2) generations of garnet-bearing assemblagesseparated by the formation of two-pyroxene, spinel symplectitearound the M1 garnet and the crystallization of low-Cr spinel1Cin the matrix. These textures suggest initial high-pressure(HP) crystallization of garnet peridotite and pyroxenite succeededby decompression into the spinel stability field, followed byrecompression into the garnet peridotite facies. Some pyroxenitelayers appear to be characterized solely by M2 assemblages withstretched garnet as large as several centimeters. Laser ablationmicroprobe–inductively coupled plasma mass spectrometryRe–Os analyses of single sulfide grains generally definemeaningless model ages suggesting more than one episode of Reand/or Os addition and/or loss to the body. Pentlandite grainsfrom a single polished slab of one garnet peridotite, however,define a linear array on an Re–Os isochron diagram that,if interpreted as an errorchron, suggests an Archean melt extractionevent that left behind the depleted dunite and harzburgite bodiesthat characterize the SNC. Refertilization of this mantle bymelts associated with the development of the pyroxenite layersis indicated by enriched clinopyroxene Sr–Nd isotope ratios,and by parallel large ion lithophile-enriched trace elementpatterns in clinopyroxene from pyroxenite and the immediatelyadjacent peridotite. Clinopyroxene and whole-rock model Sm–Ndages (TDM = 1·1–2·2 Ga) indicate that fertilizationtook place in Proterozoic times. Sm–Nd garnet2–clinopyroxene2–wholerock ± orthopyroxene2 mineral isochrons from three pyroxenitelayers define overlapping ages of 452·1 ± 7·5and 448 ± 13 Ma and 451 ± 43 Ma (2  相似文献   
17.
18.
19.
We report the field, petrographic and mineral chemical characteristics of relict super‐silicic (=majoritic) garnet microstructures from the Otrøy peridotites in the Western Gneiss Region, Norway. The evidence for the former existence of super‐silicic garnet consists of two‐pyroxene exsolution microstructures from garnet. Estimates of the initial composition of the super‐silicic garnet imply pressures of 6–6.5 GPa, indicating that the Otrøy garnet peridotites were derived from depths >185 km. The garnet peridotites consist of inter‐banded variable compositions with c. 50% garnet peridotite and 50% garnet‐free peridotite. Two distinct garnet types were identified: (a) normal matrix garnet, grain‐size ≤4 mm, and (b) large isolated single garnet crystals and/or (polycrystalline) garnet nodules up to 10 cm in size. Large garnet nodules occur only within limited bands within the garnet peridotites. The relicts of super‐silicic garnet were exclusively found in some (not all) of the larger garnet nodules. Petrographic observations revealed that the microstructure of nodular garnet consists of the following four characteristic elements. (1) Individual garnet nodules are polycrystalline, with grain sizes of 2–8 mm. Garnet grain boundaries are straight with well‐defined triple junctions. (2) Some garnet triple junctions and garnet grain boundaries are decorated by interstitial orthopyroxene. (3) Cores of larger polycrystalline garnet contain two‐pyroxene exsolution microstructures. (4) Precipitation‐free rims (2 mm thick) surround garnet cores containing the exsolved pyroxene microstructure. Pyroxene exsolution from super‐silicic garnet was subsequently followed by brittle–ductile deformation of garnet. Both exsolved pyroxene needles and laths become undulous or truncated by fractures. Simultaneous garnet plasticity is indicated by the occurrence of high densities of naturally decorated dislocations. Transmission electron microscopy observations indicate that decoration is due to Ti‐oxide precipitation. Estimates of the P–T conditions for mineral chemical equilibration were obtained from geothermobarometry. The mineral compositions equilibrated at mantle conditions around 805±40 °C and 3.2±0.2 GPa. These P–T estimates correspond to cold continental lithosphere conditions at depths of around 105 km. From a combination of both depth estimates it can be concluded that the microstructural memory of the rock extends backwards to twice as great a depth range as obtained by thermobarometric methods. Available geochronological and geochemical data of Norwegian garnet peridotites suggest a multi‐stage, multi‐orogenic exhumation history.  相似文献   
20.
Patterns and levels of chlorinated aromatic contaminants (DDTs, PCBs, non-ortho PCBs and PCDD/Fs) in blubber tissue were compared among six sample groups of male harbour porpoises (Phocoena phocoena) from the Baltic Sea, the Kattegat-Skagerrak Seas and the west coast of Norway. A principal component and classification analysis showed that mature harbour porpoises from the Baltic had significantly different contaminant patterns than animals from the Kattegat-Skagerrak and Norway. ANOVAs showed that mature porpoises from the Baltic had higher levels of ΣPCB and several individual PCBs and PCDD/Fs than the Kattegat-Skagerrak and the Norwegian samples and higher ΣDDT than the Norwegian. A comparison between immature porpoises showed that Baltic animals had higher levels of ΣPCDD/F than the corresponding sample from the Kattegat-Skagerrak. The levels of ΣDDT, ΣPCB and Σnon-ortho PCB were significantly higher in animals collected during 1978–81 compared to animals collected in 1988–90 indicating a temporal decline of these organochlorines in the Kattegat-Skagerrak Seas. The contaminant levels recorded in the Baltic Sea are a serious cause for concern and could have management implications for the already threatened harbour porpoises in this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号