首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   2篇
  国内免费   4篇
测绘学   3篇
大气科学   8篇
地球物理   19篇
地质学   11篇
天文学   2篇
自然地理   23篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   1篇
  2011年   5篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1995年   2篇
  1991年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
In sparsely cropped farming systems in semi-arid tropics, rainfall partitioning can be complex due to various interactions between vertical and horizontal water flows, both in the atmosphere and in the soil. Despite this, quantifying the seasonal rainfall partitioning is essential, in order to identify options for increased yields. Results are presented on water flow components, based on field measurements and water balance modelling, for three years (1994–96) in a farmer's field cultivated with pearl millet [Pennisetum glaucum (L.) Br.] in the Sahel (Niger). Water balance modelling was carried out for three common infiltration categories: runoff producing surfaces, surfaces receiving inflow of runon water from upstream zones, and a reference surface with zero runoff and runon. Runoff was calculated to 25%–30% of annual rainfall (which ranged from 488 to 596 mm), from crust observations, rainfall, soil wetness data, and infiltration estimates. Inflow of runon was estimated from field observations to 8%–18% of annual rainfall. The parameters in the functions for soil surface and canopy resistances were calibrated with field measurements of soil evaporation, stomatal conductance and leaf area. The model estimates of soil water contents, which were validated against neutron probe measurements, showed a reasonable agreement with observed data, with a root mean square error (RMSE) of approximately 0.02 m3 m−3 for 0–160 cm soil depth. Estimated productive water flow as plant transpiration was low, amounting to 4%–9% of the available water for the non-fertilised crop and 7%–24% for the fertilised crop. Soil evaporation accounted for 31%–50% of the available water, and showed a low variation for the observed range of leaf area (LAI <1 m2 m−2). Deep percolation was high, amounting to 200–330 mm for the non-crusted surfaces, which exceeded soil evaporation losses, for 1994–95 with relatively high annual rainfall (517–596 mm). Even a year with lower rainfall (488 mm) and a distinct dry spell during flowering (1996), resulted in an estimated deep percolation of 160 mm for the non-fertilised crop. The crop did not benefit from the additional inflow of runon water, which was partitioned between soil water storage and deep percolation. The only exception to this was the fertilised crop in 1996, where runon somewhat compensated for the limited rainfall and the higher water demand as a result of a larger leaf area than the non-fertilised crop. The effects of rainfall erraticness, resulting in episodic droughts, explain why a crop that uses such a small proportion of the available water, in an environment with substantial deep percolation, still suffers from water scarcity. Application of small levels of phosphorus and nitrogen roughly doubled yields, from 380 to 620 kg ha−1, and plant transpiration, from 33 to 78 mm. Evapotranspirational water use efficiency (WUEET) was low, 6500–8300 m3 ton−1 grain for non-fertilised crop, which is an effect of the low on-farm yields and high non-productive water losses. The estimated seasonal rainfall partitioning indicates the possibility of quantifying vertical water flows in on-farm environments in the Sahel, despite the presence of surface overland flow.  相似文献   
62.
Updated rainfall data to 2006 confirm that the Sahelian rainfall has increased since the end of the 1990s, but the annual average rainfall is still as low as during the drought of the 1970s. The decrease of rainfall is higher in the Northwest and lower in the Southeast Sahel. The increase of temperature over West Africa during the end of the 20th century induced an increase of Potential Evaporation, which might reduce the runoff. However, the joint effect of climate change and of human activities on land cover over more than three decades is responsible for an increase of the runoff coefficients of the West African Sahelian Rivers since the 1970s, despite the rainfall shortage during the same period, as revealed by the analysis of runoff from Mauritania, Burkina-Faso and Niger. The runoff coefficients have increased in regions with less than 750 mm of annual rainfall, under Sahelian and subdesertic climates, leading to increased flood peaks, occurring earlier in the season. Even if it is difficult to separate which part of this runoff coefficient increase is due to climate change alone or to human impact on land cover, the highest values are observed in the most inhabited areas, where land cover is dominated by cultivated areas. This climatic/human impact on land cover is so huge that it has changed since decades the hydrological regimes of the Sahelian Rivers, from the small watershed to the largest one, such as the Niger River at Niamey.  相似文献   
63.
Herbaceous vegetation in the Sahel grows almost exclusively on sandy soils which preferentially retain water through infiltration and storage. The hydrological functioning of these sandy soils during rain cycles is unknown. One way to tackle this issue is to spatialize variations in water content but these are difficult to measure in the vadose zone. We investigated the use of Electrical Resistivity Tomography (ERT) as a technique for spatializing resistivity in a non-destructive manner in order to improve our knowledge of relevant hydrological processes. To achieve this, two approaches were examined. First, we focused on a possible link between water tension (which is much easier to measure in the field by point measurements than water content), and resistivity (spatialized with ERT). Second, because ERT is affected by solution non-uniqueness and reconstruction smoothing, we improved the accuracy of ERT inversion by comparing calculated solutions with in-situ resistivity measurements. We studied a natural microdune during a controlled field experiment with artificial sprinkling which reproduced typical rainfall cycles. We recorded temperature, water tension and resistivity within the microdune and applied surface ERT before and after the 3 rainfall cycles. Soil samples were collected after the experiment to determine soil physical characteristics. An experimental relationship between water tension and water content was also investigated. Our results showed that the raw relationship between calculated ERT resistivity and water tension measurements in sand is highly scattered because of significant spatial variations in porosity. An improved correlation was achieved by using resistivity ratio and water tension differences. The slope of the relationship depends on the soil solution conductivity, as predicted by Archie's law when salted water was used for the rain simulation. We found that determining the variations in electrical resistivity is a sensitive method for spatializing the differences in water tension which are directly linked with infiltration and evaporation/drainage processes in the vadose zone. However, three factors complicate the use of this approach. Firstly, the relation between water tension and water content is generally non-linear and dependent on the water content range. This could limit the use of our site-specific relations for spatializing water content with ERT through tension. Secondly, to achieve the necessary optimization of ERT inversion, we used destructive resistivity measurements in the soil, which renders ERT less attractive. Thirdly, we found that the calculated resistivity is not always accurate because of the smoothing involved in surface ERT data inversion. We conclude that further developments are needed into ERT image reconstruction before water tension (and water content) can be spatialized in heterogeneous sandy soils with the accuracy needed to routinely study their hydrological functioning.  相似文献   
64.
The monotony of the surface and of the deep structure of the Sahel domain in eastern Tunisia (low topographic area covered by a Quaternary series) induces the possible existence of an important subsiding collapsed block and associated faulted zones. Gravity data analyses have permitted the reconnaissance of the crustal and gravimetric setting of the northern part of the Sahel domain and the discussion of main outlines of subsurface structures. The deep structure of a particular zone (Kairouan–Sousse–Monastir area) demonstrates the existence of an east-west en-doigt-de-gant crustal thinning confirmed by the gravity data. This deep structuring is perfectly showed by the high-resolution second-order enhanced analytic signal technique developed to image geologic boundaries such as contacts and faults. This technique, correlated with the distribution of all seismic events in the last century, has permitted to define an important east–west Kairouan–Sousse–Monastir tectonic corridor (CKSM). This corridor corresponds to major faults oriented east-west, were some folded structures can be developed. To cite this article: H. Gabtni, C. R. Geoscience 337 (2005).  相似文献   
65.
Water is a major limiting factor in arid and semi‐arid agriculture. In the Sahelian zone of Africa, it is not always the limited amount of annual rainfall that constrains crop production, but rather the proportion of rainfall that enters the root zone and becomes plant‐available soil moisture. Maximizing the rain‐use efficiency and therefore limiting overland flow is an important issue for farmers. The objectives of this research were to model the processes of infiltration, runoff and subsequent erosion in a Sahelian environment and to study the spatial distribution of overland flow and soil erosion. The wide variety of existing water erosion models are not developed for the Sahel and so do not include the unique Sahelian processes. The topography of the Sahelian agricultural lands in northern Burkina Faso is such that field slopes are generally low (0–5°) and overland flow mostly occurs in the form of sheet flow, which may transport large amounts of fine, nutrient‐rich particles despite its low sediment transport capacity. Furthermore, pool formation in a field limits overland flow and causes resettlement of sediment resulting in the development of a surface crust. The EUROSEM model was rewritten in the dynamic modelling code of PCRaster and extended to account for the pool formation and crust development. The modelling results were calibrated with field data from the 2001 rainy season in the Katacheri catchment in northern Burkina Faso. It is concluded that the modified version of EUROSEM for the Sahel is a fully dynamic erosion model, able to simulate infiltration, runoff routing, pool formation, sediment transport, and erosion and deposition by inter‐rill processes over the land surface in individual storms at the scale of both runoff plots and fields. A good agreement is obtained between simulated and measured amounts of runoff and sediment discharge. Incorporating crust development during the event may enhance model performance, since the process has a large influence on infiltration capacity and sediment detachment in the Sahel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
66.
Many studies have shown a ‘greening of the Sahel’ on the basis of analysis of time series of satellite images and this has shown to be, at least partly, explained by changes in rainfall. In northern Burkina Faso, an area stands out as anomalous in such analysis, since it is characterized by a distinct spatial pattern and strongly dominated by negative trends in Normalized Difference Vegetation Index (NDVI). The aim of the paper is to explain this distinct pattern. When studied over the period 2000–2012, using NDVI data from the MODIS sensor the spatial pattern of NDVI trends indicates that non-climatic factors are involved. By relating NDVI trends to landscape elements and land use change we demonstrate that NDVI trends in the north-western parts of the study area are mostly related to landscape elements, while this is not the case in the south-eastern parts, where rapidly changing land use, including. expansion of irrigation, plays a major role. It is inferred that a process of increased redistribution of fine soil material, water and vegetation from plateaus and slopes to valleys, possibly related to higher grazing pressure, may provide an explanation of the observed pattern of NDVI trends. Further work will focus on testing this hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号