首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   16篇
  国内免费   19篇
测绘学   4篇
大气科学   25篇
地球物理   42篇
地质学   5篇
海洋学   18篇
天文学   17篇
综合类   3篇
自然地理   3篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
排序方式: 共有117条查询结果,搜索用时 31 毫秒
111.
Scattering theory, a form of perturbation theory, is a framework from within which time‐lapse seismic reflection methods can be derived and understood. It leads to expressions relating baseline and monitoring data and Earth properties, focusing on differences between these quantities as it does so. The baseline medium is, in the language of scattering theory, the reference medium and the monitoring medium is the perturbed medium. The general scattering relationship between monitoring data, baseline data, and time‐lapse Earth property changes is likely too complex to be tractable. However, there are special cases that can be analysed for physical insight. Two of these cases coincide with recognizable areas of applied reflection seismology: amplitude versus offset modelling/inversion, and imaging. The main result of this paper is a demonstration that time‐lapse difference amplitude versus offset modelling, and time‐lapse difference data imaging, emerge from a single theoretical framework. The time‐lapse amplitude versus offset case is considered first. We constrain the general time‐lapse scattering problem to correspond with a single immobile interface that separates a static overburden from a target medium whose properties undergo time‐lapse changes. The scattering solutions contain difference‐amplitude versus offset expressions that (although presently acoustic) resemble the expressions of Landro ( 2001 ). In addition, however, they contain non‐linear corrective terms whose importance becomes significant as the contrasts across the interface grow. The difference‐amplitude versus offset case is exemplified with two parameter acoustic (bulk modulus and density) and anacoustic (P‐wave velocity and quality factor Q) examples. The time‐lapse difference data imaging case is considered next. Instead of constraining the structure of the Earth volume as in the amplitude versus offset case, we instead make a small‐contrast assumption, namely that the time‐lapse variations are small enough that we may disregard contributions from beyond first order. An initial analysis, in which the case of a single mobile boundary is examined in 1D, justifies the use of a particular imaging algorithm applied directly to difference data shot records. This algorithm, a least‐squares, shot‐profile imaging method, is additionally capable of supporting a range of regularization techniques. Synthetic examples verify the applicability of linearized imaging methods of the difference image formation under ideal conditions.  相似文献   
112.
The interaction between the typhoons Fengshen and Fung-wong over the Western Pacific in 2002 is studied with the Conditional Nonlinear Optimal Perturbation (CNOP) method. The study discovered that the CNOP method reveals the process of one-way interaction between Fengshen and Fung-wong. Moreover, if the region of Fung-wong was selected for verification, the sensitivity area was mainly located in the region of Fengshen and presented a half-ring structure; if the region of Fengshen was selected for verification, most of the sensitivity areas were located in the region between the Fengshen and the subtropical high, far away from Fung-wong. This indicated that Fung-wong is mainly steered by Fengshen, but Fengshen is mainly affected by the subtropical high. The sensitivity experiment showed that the initial errors in the CNOP-identified sensitive areas have larger impacts on the verification-area prediction than those near the typhoon center and their developments take a large proportion in the whole domain. This suggests that the CNOP-identified sensitive areas do have large influence on the verification-area prediction.  相似文献   
113.
114.

伽马-伽马密度快速正演结果作为中子和密度联合反演模型的输入,对实时反演确定地层几何结构及属性参数具有重要的意义.基于时间独立的玻耳兹曼输运方程,结合微扰理论与蒙特卡罗(Monte Carlo N Particle Transport Code,MCNP)模拟,形成了伽马-伽马密度快速计算方法.以双源距补偿密度仪器参数为基准,建立了不同基准密度地层条件下的扰动灵敏度函数数据库.分析对比了快速计算和蒙特卡罗模拟在不同岩性密度、水平层状地层及倾斜地层条件下的密度结果与误差.结果表明: 不同地层条件下的伽马-伽马密度快速计算结果与MCNP模拟结果吻合,三种岩性(砂岩、碳酸岩和白云岩)密度计算的平均误差小于0.01 g·cm-3且与MCNP模拟速度相比,快速计算效率提高106倍.

  相似文献   
115.
基于微扰理论,研究了内部存在一个同轴圆柱扰动体时圆柱谐振腔共振频率的偏移问题.其中,圆柱谐振腔的边侧面是刚性的,上下底面应力自由.经过推导,得出了圆柱扰动体存在时谐振腔的声势与共振频率的表达式.在此基础上,分析了谐振腔与圆柱扰动体各种参数对谐振腔共振频率的影响.数值模拟结果表明,谐振腔的共振频率受扰动体在谐振腔中的位置影响较大.圆柱谐振腔的共振频率在圆柱扰动体居中时是最大值,并且其共振频率对扰动体的声速敏感;当扰动体在谐振腔两端时,谐振腔共振频率是最小值,并且其对扰动体的密度敏感.最后,通过数值模拟结果和实验测量结果之间的对比,发现两者的基本变化趋势是吻合的.  相似文献   
116.
扰动位能与大气环流异常的耦合关系及机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文在前期局地扰动位能理论工作基础上,进一步着眼于扰动位能与大气环流异常的关系和机理问题,采用奇异值分解(SVD)方法分析了扰动位能与高、中、低层大气动能的耦合相关模态以及年际变率情况,同时考察它与作为大气质量分布的海平面气压之间的相关关系,并从物理上初步探讨了扰动位能与大气动能以及质量的相关机理问题.结果表明,扰动位能自身变率的第一模态同时也是与大气环流异常场耦合变化的主要模态,与之相对应的大气动能和质量场的主模态也是其自身变率的支配模态,说明它们之间存在相互制约的物理机制.而且,热带外地区大气环流主模态特征的形成,与扰动位能兼具全球尺度纬向对称结构和局地尺度纬向非对称性密不可分.另外,冬季南北半球环状模指数与扰动位能的前两阶矩存在非常好的相关关系,而在夏季这种关系明显削弱,仅存在于南半球.  相似文献   
117.
付广裕  孙文科 《地球物理学报》2012,55(08):2728-2746
本文提出一个新算法,用来高精度计算三维不均匀地球模型中地震位错引起的地表以及空间固定点同震重力变化.具体地说,我们首先把实际三维不均匀地球分解成球对称地球模型和对应的横向不均匀增量,分别进行计算,二者对应的计算结果分别称为球对称解和三维响应.由于球对称解可直接利用球对称地球模型位错理论计算得到,本文的目标是计算三维响应即地球的横向不均匀结构对同震重力变化的影响.然后,我们把三维响应再分为震源的响应和地球横向不均匀结构的响应,它们可分别借助对震源函数的扰动以及对平衡方程式的变分求解.本文推导出六个特殊点源位错引起的地表以及空间固定点同震重力变化计算公式(一个垂直走滑位错,两个相互垂直的倾滑位错,三个开裂位错),对这些公式进行适当组合就可以计算任意位置任意类型位错产生的同震重力变化,对应的计算公式同步给出.接着,依据36阶P波速度模型,我们利用岩石试验经验关系式推导出三维S波速度模型,密度模型,位场模型以及重力模型.最后,利用上述三维模型,本文计算出三种典型类型的点源位错产生的同震重力变化,结果显示三维响应与位错类型,震源深度都有关系,其最大响应占球对称解的0.5%左右,且在所有影响因素中S波速度模型影响最大.数值结果同时表明,三维响应中震源的响应与地球横向不均匀构造的响应处于同一量级.本文给出的地表和空间固定点同震重力变化计算公式可分别高精度解析地表重力和卫星重力观测数据(GRACE、GOCE等),提高大地测量数据理论解析水平.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号