首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1053篇
  免费   107篇
  国内免费   245篇
测绘学   102篇
大气科学   226篇
地球物理   122篇
地质学   236篇
海洋学   108篇
天文学   538篇
综合类   34篇
自然地理   39篇
  2024年   6篇
  2023年   5篇
  2022年   30篇
  2021年   42篇
  2020年   34篇
  2019年   30篇
  2018年   30篇
  2017年   44篇
  2016年   37篇
  2015年   45篇
  2014年   50篇
  2013年   57篇
  2012年   43篇
  2011年   44篇
  2010年   38篇
  2009年   89篇
  2008年   67篇
  2007年   102篇
  2006年   109篇
  2005年   76篇
  2004年   81篇
  2003年   78篇
  2002年   41篇
  2001年   41篇
  2000年   40篇
  1999年   36篇
  1998年   34篇
  1997年   9篇
  1996年   19篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   9篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有1405条查询结果,搜索用时 62 毫秒
31.
Major concentrations of Al2O3, Fe2O3, MgO, CaO, Na2O and K2O, minor levels of TiO2, P2O5 and thirty petrologically, geochemically and environmentally significant trace elements have been determined in microwave oven acid leachates of whole powdered coal samples by direct current plasma‐atomic emission spectrometry (DCP‐AES). A single sample preparation procedure was suitable for all the determinations with no additional dilution step for major elements solution. Dried samples (0.5 g) were treated in low‐pressure PFA digestion vessels with HF/HCl/HNO3/HClO4 acids to quantitatively extract the analytes from the bulk material, while leaving the major part of organic matrix as a residue. The major constituents of geological samples, in particular the easily ionised elements (EIEs) such as alkali and alkaline earths, may complicate the instrumental determinations in DCP‐AES because of differential enhancements of elemental emission intensities and stray light interferences. Taking account of these factors, the coal matrix is considered to have very low major oxide totals as compared to many other common geo‐environmental and related materials (rocks, sediments, soil, ashes etc.). The sample size employed here, while yielding a relatively concentrated solution to cover a wide range of elemental determinations, provided a sample matrix that significantly diminished interferences for DCP measurements. The need for closely matching the unknowns and calibrators was eliminated except for overall acidity and an excess quantity of caesium for EIE buffering. Calibration of the spectrometer was accomplished by simple aqueous single element solutions as high concentration calibrators in addition to a reagent blank as a low concentration calibrator. Two point working curves were established to allow for the maximum concentrations of each element expected in the unknowns. The precision of determinations under routine conditions as well as the reproducibility of the leaching and precision of instrumental measurements have been evaluated. Relative standard deviations (RSD) were of 1–2% for those elements whose concentrations in solid samples were well above the limits of quantification. Method detection limits in the buffered solutions were also evaluated. To evaluate the accuracy of the microwave oven‐DCP method a suite of eight certified coal reference materials of differing rank, were analysed with good agreement with the certified and/or available published data. Results are presented for the uncertified major oxides in the AR series reference materials.  相似文献   
32.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   
33.
Currently observed climate warming in the Arctic has numerous consequences. Of particular relevance, the precipitation regime is modified where mixed and liquid precipitation can occur during the winter season leading to rain‐on‐snow (ROS) events. This phenomenon is responsible for ice crust formation, which has a significant impact on ecosystems (such as biological, hydrological, ecological and physical processes). The spatially and temporally sporadic nature of ROS events makes the phenomenon difficult to monitor using meteorological observations. This paper focuses on the detection of ROS events using passive microwave (PMW) data from a modified brightness temperature (TB) gradient approach at 19 and 37 GHz. The approach presented here was developed empirically for observed ROS events with coincident ground‐based PMW measurements in Sherbrooke, Quebec, Canada. It was then tested in Nunavik, Quebec, with the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E). We obtained a detection accuracy of 57, 71 and 89% for ROS detection for three AMSR‐E grid cells with a maximum error of 7% when considering all omissions and commissions with regard to the total number of AMSR‐E passes throughout the winter period. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
34.
Knowledge of sub-pixel heterogeneity, particularly at the passive microwave scale, can improve the brightness temperature (and ultimately the soil moisture) estimation. However, the impact of surface heterogeneity (in terms of soil moisture, soil temperature and vegetation water content) on brightness temperature in an agricultural setting is relatively unknown. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) provided an opportunity to evaluate sub-pixel heterogeneity at the scale of a Soil Moisture Ocean Salinity (SMOS) or the Soil Moisture Active Passive (SMAP) radiometer footprint using field measured data. The first objective of this study was to determine if accounting for surface heterogeneity reduced the error between estimated brightness temperature (Tb) and Tb measured by SMOS. It was found that when accounting for variation in surface soil moisture, temperature and vegetation water content within the pixel footprint, the error between the modelled Tb and the measured Tb was less than if a homogeneous pixel were modelled. The correlation between the surface parameters and the error associated with not accounting for surface heterogeneity were investigated. It was found that there was low to moderate correlation between the error and the coefficient of variance associated with the measured soil moisture, soil temperature and vegetation volumetric water content during the field campaign. However, it was found that the correlations changed depending on the stage of vegetation growth and the amount of time following a precipitation event. At the start of the field campaign (following a precipitation event), there was strong correlation between the error and all three surface parameters (r  0.75). Following a precipitation event close to the middle of the field campaign (during which there was rapid growth in vegetation), there was strong correlation between the error and the variability in vegetation water content (r = 0.89), moderate correlation with soil moisture (r = 0.61) and low correlation with soil temperature (r = 0.26).  相似文献   
35.
In this study, hydrogen sulfide (H2S) measurements in air carried out using (a) passive/diffusive samplers (Radiello® traps) and (b) a high-frequency (60 s) real-time analyzer (Thermo® 450i) were compared in order to evaluate advantages and limitations of the two techniques. Four different sites in urban environments (Florence, Italy) and two volcanic areas characterized by intense degassing of H2S-rich fluids (Campi Flegrei and Vulcano Island, Italy) were selected for such measurements. The concentrations of H2S generally varied over 5 orders of magnitude (from 10−1–103 μg/m3), the H2S values measured with the Radiello® traps (H2SR) being significantly higher than the average values measured by the Thermo® 450i during the trap exposure (H2STa), especially when H2S was <30 μg/m3. To test the reproducibility of the Radiello® traps, 8 passive/diffusive samplers were contemporaneously deployed within an 0.2 m2 area in an H2S-contaminated site at Mt. Amiata (Tuscany, Italy), revealing that the precision of the H2SR values was ±49%. This large uncertainty, whose cause was not recognizable, is to be added to that related to the environmental conditions (wind speed and direction, humidity, temperature), which are known to strongly affect passive measurements. The Thermo® 450i analyzer measurements highlighted the occurrence of short-term temporal variations of the H2S concentrations, with peak values (up to 5732 μg/m3) potentially harmful to the human health. The Radiello® traps were not able to detect such temporal variability due to their large exposure time. The disagreement between the H2SR and H2STa values poses severe concerns for the selection of an appropriate methodological approach aimed to provide an accurate measurement of this highly toxic air pollutant in compliance with the WHO air quality guidelines. Although passive samplers may offer the opportunity to carry out low-cost preliminary surveys, the use of the high-frequency H2S analyzer is preferred when an accurate assessment of air quality is required. In fact, the latter provides precise real-time measurements for a reliable estimation of the effective exposure to hazardous H2S concentrations, giving insights into the mechanisms regulating the dispersion of this air pollutant in relation to the meteorological parameters.  相似文献   
36.
海泡石是一种纤维状含水的富镁硅酸盐黏土矿,其中的稀土元素含量在1×10~(-7)~1×10~(-5)之间,目前还没有建立海泡石中稀土元素的国家标准分析方法。测定岩石中的稀土元素主要是采用电感耦合等离子体质谱法(ICP-MS),样品前处理一般采用封闭溶矿和碱熔,但这两种处理方法耗时较长,效率不高。本文通过比较硝酸-氢氟酸-过氧化氢、硝酸-氢氟酸、硝酸-过氧化氢三种样品前处理方法,确定使用硝酸-氢氟酸溶矿,然后进行微波消解同时赶去氢氟酸,避免氢氟酸与稀土元素生成难溶的氟化物,再采用ICP-MS法测定15种稀土元素的含量。由于海泡石中的镁含量较高,为降低基体效应,以~(103)Rh和~(185)Re作内标补偿基体效应和校正灵敏度漂移,各元素测定值的准确性显著提高,回收率为91. 2%~110. 9%,检出限为0. 002~0. 011μg/L,精密度≤2. 79%。本方法与封闭酸溶ICP-MS法的分析结果吻合较好,且用酸量少(7 mL),溶矿效率高(1 h),检出限更低。  相似文献   
37.
刘金平  张万昌  邓财  聂宁 《冰川冻土》2018,40(4):643-654
利用2000-2014年MODIS逐日无云积雪产品对雅鲁藏布江流域积雪特征的空间分布及变化、积雪随高程变化的规律进行了分析,并采用被动微波数据SMMR (1979-1987年)和SSM/I (1988-2008年)以及中国地面降水和气温0.5°×0.5°日值格点数据集,研究了雅鲁藏布江流域关键积雪参数对气候要素的响应等。结果表明:流域下游积雪日较大且变化剧烈;流域整体上呈显著减少的趋势;积雪日随高程的上升而增加;流域内降水呈不显著的增加趋势,而气温呈显著的增加趋势,最高气温对积雪变化影响最大;气温对积雪终日的影响明显高于积雪初日;在积雪消融期降水的增多促进了积雪的消融。  相似文献   
38.
选取2016—2018年每年4—9月份RPG-HATPRO型42通道微波辐射计观测的不稳定指数参数(K、SI、CAPE、LI)及水汽参数(IWV、LWP),研究得出各参数触发雷雨大风、短时强降水的阈值条件为K>37℃、SI<-1℃、IWV>60 kg/m~2、LWP>400 g/m~2,而LI、CAPE无法对3种天气类型进行区分。利用费舍判别分析方法,将不稳定指数参数及水汽参数作为预报因子,建立预报方程并进行检验,结果表明:二级判别方程预测对流天气的准确率为76%,可以作为预报对流天气的辅助工具;多级判别方程不能很好地区分3种天气类型,但将其作为修正后的二级判别方程使用,能提高对流天气的测中概率。  相似文献   
39.
海泡石是具有层状结构的含水富镁硅酸盐黏土矿物,其中无机元素含量是揭示其成矿物质来源、成矿流体性质和矿床成因的重要依据,通常采用电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)进行测定,等离子体(ICP)的高温激发会产生成大量谱线干扰,维持ICP稳定工作需使用高纯氩气,持续供气对于偏远矿区海泡石的检测还将面对气体采购和运输不便的问题。本文基于微波等离子体原子发射光谱(MP-AES)的低温激发技术减少光谱干扰,建立了准确测定偏远矿区海泡石中主量元素Mg、Al、Ca、Fe、K、Na和微量元素Cu、Zn、Mn、Pb含量的分析方法。利用硝酸-盐酸-氢氟酸混合酸对海泡石进行微波消解,避免了样品处理过程中分析元素的损失,加快了样品处理速度,同时提高了样品溶液的稳定性。通过选择各元素光谱线的分析波长,并利用快速线性干扰校正(FLIC)技术校正光谱干扰,以Lu为内标元素校正基体效应,提高了灵敏度和准确度。各元素的检出限为0.19~14.6μg/L。海泡石国家标准物质(GBW07138)各元素测定值与认定值的相对误差在-5.0%~6.7%之间。本方法具有检出限低、线性范围宽、结果准确等优点;MP-AES采用自带的氮气发生器为等离子体提供氮气作为工作气,无需引入复杂气体,提高了分析效率,尤其适用于气体采购和运输不便的偏远矿区。  相似文献   
40.
The relationship between differences in microwave humidity sounder(MHS)–channel biases which represent measured brightness temperatures and model-simulated brightness temperatures, and cloud ice water path(IWP) as well as the influence of the cloud liquid water path(LWP) on the relationship is examined. Seven years(2011–17) of NOAA-18 MHS-derived measured brightness temperatures and IWP/LWP data generated by the NOAA Comprehensive Large Array-data Stewardship System Microwave Surface and Precipitation Products System are used. The Community Radiative Transfer Model, version2.2.4, is used to simulate model-simulated brightness temperatures using European Center for Medium-Range Weather Forecasts reanalysis data as background fields. Scan-angle deviations of the MHS window channel biases range from-1.7 K to1.0 K. The relationships between channels 2, 4, and 5 biases and scan angle are symmetrical about the nadir. The latitudedependent deviations of MHS window channel biases are positive and range from 0–7 K. For MHS non-window channels,the latitudinal deviations between measured brightness temperatures and model-simulated brightness temperatures are larger when the detection height is higher. No systematic warm or cold deviations are found in the global spatial distribution of difference between measured brightness temperatures and model-simulated brightness temperatures over oceans after removing scan-angle and latitudinal deviations. The corrected biases of five different MHS channels decrease differently with respect to the increase in IWP. This decrease is stronger when LWP values are higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号