首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3081篇
  免费   182篇
  国内免费   379篇
测绘学   33篇
大气科学   86篇
地球物理   363篇
地质学   869篇
海洋学   634篇
天文学   1421篇
综合类   60篇
自然地理   176篇
  2024年   14篇
  2023年   34篇
  2022年   47篇
  2021年   58篇
  2020年   60篇
  2019年   80篇
  2018年   56篇
  2017年   67篇
  2016年   69篇
  2015年   84篇
  2014年   94篇
  2013年   88篇
  2012年   82篇
  2011年   123篇
  2010年   101篇
  2009年   248篇
  2008年   232篇
  2007年   246篇
  2006年   257篇
  2005年   190篇
  2004年   209篇
  2003年   172篇
  2002年   159篇
  2001年   146篇
  2000年   143篇
  1999年   133篇
  1998年   136篇
  1997年   42篇
  1996年   41篇
  1995年   38篇
  1994年   35篇
  1993年   16篇
  1992年   10篇
  1991年   13篇
  1990年   18篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   19篇
  1984年   15篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1978年   2篇
排序方式: 共有3642条查询结果,搜索用时 15 毫秒
991.
土壤有机质光谱特征研究(英文)   总被引:1,自引:0,他引:1  
The study on soil spectral reflectance features is the physical basis for soil remote sensing. Soil organic matter content influences the soil spectral reflectance dramatically. This paper studied the spectral curves between 400 nm∼2500 nm of 174 soil samples which were collected in Hengshan county and Yixing county. Fourteen types of transformations were applied to the soil reflectance R to remove the noise and to linearize the correlation between reflectance (independent variable) and soil organic matter (SOM) content (dependent variable). Then, the methods such as derivative spectrum technology and stepwise regression analysis, were applied to study the relationship between these soil spectral features and soil organic matter content. It shows that order 1 derivative of the logarithm of reflectance (O1DLA) is the most sensitive to SOM among the various transform types of reflectance in consideration. The regression model whose coefficient of determination reaches 0.885 is built. It predicted the soil organic matter content with higher effect. Supported by the National Natural Science Foundation of China (No. 40271007).  相似文献   
992.
A survey of a Ligurian tourist harbour was carried out during winter 2006 and summer 2007 in order to study the organic matter (OM) turnover through extracellular enzymatic activity. Seawater and sediments were sampled at six stations, three inside the port boundaries, one outside the port and two in an area influenced by the outflow of a minor river (Boate). The seawater showed OM turnover times similar to other oligo-mesotrophic coastal areas, and low concentrations of chlorophyll-a and inorganic nutrients. The sediments, instead, revealed high OM loads and a predominance of proteolysis. A significant reduction of the OM loads was observed in the outside station, indicating that the OM accumulation was due to the structures and activities of the harbour and to the Boate influence. The OM biotic recycling via enzymatic activity was enhanced especially during summer. Although the carbohydrates were probably highly refractory, their turnover was notably faster, due to glycolytic enzymatic activity that was enhanced more than the proteolytic in both the sediment and in the seawater. This suggested that the removal and recycling of OM were potentially efficient, and prevented the shift to eutrophication of the Rapallo harbour area.  相似文献   
993.
The Oligocene Ruslar Formation is a hydrocarbon source rock in the Kamchia Depression, located in the Western Black Sea area. Depositional environment and source potential of the predominantly pelitic rocks were investigated using core and cuttings samples from four offshore wells. In these wells the Ruslar Formation is up to 500 m thick. Based on lithology and well logs, the Ruslar Formation is subdivided from base to top into units I–VI. Dysoxic to anoxic conditions and mesohaline to euhaline salinities prevailed during deposition of the Ruslar Formation. Relatively high oxygen contents occurred during early Solenovian times (lower part of unit II), when brackish surface water favoured nannoplankton blooms and the deposition of bright marls (“Solenovian event”). Anoxic conditions with photic zone anoxia were established during late Oligocene times (units III and IV) and, probably, reflect a basin-wide anoxic event in the Eastern Paratethys during Kalmykian times. Organic carbon content in the Ruslar Formation is up to 3%. Autochthonous aquatic and allochthonous terrigenous biomass contribute to the organic matter. Relatively high amounts of aquatic organic matter occur in the lower part of the Ruslar Formation (units I and II) and in its upper part (unit VI). Diatoms are especially abundant in the lower part of unit VI. The kerogen is of type III and II with HI values ranging from 50 to 400 mgHC/gTOC. Units I and II (Pshekian, lower Solenovian) are characterized by a fair (to good) potential to produce gas and oil, but potential sources for gas and oil also occur in the Upper Oligocene units IV–VI.  相似文献   
994.
We report a study of the attenuation of submarine Photosynthetically Active Radiation (PAR) in relation to the concentrations of Optically Active Constituents (OACs) in a range of water types around the United Kingdom. 408 locations were visited between August 2004 and December 2005. The diffuse attenuation coefficient (Kd) was estimated from profiles of downwelling PAR. Concentrations of Suspended Particulate Matter (SPM) were measured gravimetrically and concentrations of phytoplankton chlorophyll (chl) were measured by fluorometrically. Chromophoric Dissolved Organic Matter (CDOM) was measured either by fluorescence or as its proxy, salinity.  相似文献   
995.
Cadmium and copper in the dissolved and particulate phase and in zooplankton were determined in the Bahía Blanca estuary during six surveys from March to December 2005. Temperature, pH, salinity, dissolved oxygen, suspended particulate matter, particulate organic matter and chlorophyll-a were also considered. Dissolved Cd was below the detection limit (0.2 μg L−1) for almost the entire study period whereas Cu concentrations (0.5–2.4 μg L−1) indicated a continuous dissolved Cu input. Particulate Cd concentrations ranged from below the detection limit (<0.01) to 28.6 μg g−1 d.w. while particulate Cu ranged from below the detection limit (<0.04) to 53.5 μg g−1 d.w. Cd in mesozooplankton ranged from below the detection limit (<0.01) to 37.4 μg g−1 d.w. Some of the Cd levels were higher than those reported for other aquatic ecosystems. Cu in the mesozooplankton ranged from 1.3 to 89.3 μg g−1 d.w., values which were within the reported values or higher than other studies. The log of the partition coefficients (log (Kd)) of Cd was 0.04, while log (Kd) for Cu ranged from −0.39 to 2.79. These values were lower than both those calculated for other estuaries and the typical coefficients for marine environments. The log of the bioconcentration factor (log BCF) of Cd was 1.78, indicating that Cd concentration was higher in the zooplankton than in the dissolved phase. Log BCF of Cu ranged from 1.15 to 3. The logs of the biomagnification factors (log BMF) of Cd were low, with a range between −3.45 and 2.21 and those for Cu ranged from −0.1 to 3.35. Positive values indicate biomagnification while negative values indicate biodiminution. In general, no significant dissolved Cd concentration appeared to be present in the Bahía Blanca estuary and Cu values did not indicate a critical environmental status. The particulate phase seemed to be the major carrier for Cd and Cu and TPCu values were within the normal values for an anthropogenically stressed estuary but not for a strongly polluted system. This fraction was the most important metal source for the mesozooplankton. Moreover, the highest metal concentrations were in the mesozooplankton since most of the bioconcentration and biomagnification factors were positive, especially for Cu.  相似文献   
996.
The quantity of chromophoric or coloured dissolved organic matter (CDOM) released by eleven species of intertidal and sub-tidal macroalgae commonly found on UK shores was investigated. The subsequent breakdown of CDOM was also measured by exposing collected CDOM samples to light and dark conditions for over two weeks. CDOM absorption properties were compared at a fixed wavelength of 440 nm and across two integrated wave - bands; UV-A (400–315 nm) and UV-B (315–280 nm). Absorption spectra of macroalgal CDOM samples were typically characterized by peaks and shoulders in the UV bands, features which were species specific. The spectral slope, derived using the log-linear method, proved to be very specific to the species and to the effect of light. Slope measurements ranged from 0.010 to 0.027 nm−1, in the range of normal seawater values. Significantly more CDOM was produced by algae which were illuminated, providing evidence for a light driven exudation mechanism. Averaged across all species, exudation in the dark accounted for 63.7% of that in the light in the UV-B band. Interspecific differences in exudation rate encompassed an order of magnitude, with the highest absorption measurements attributable to brown algae. However, some brown algae produced considerably less CDOM (e.g. Pelvetia canaliculata), which were more comparable to the green and red species. Over an exposure time of 16 days, significant photochemical degradation of CDOM was observed using a natural summer sunlight regime, showing that natural solar radiation could be an important removal mechanism for newly produced algal CDOM. Though the most obvious effect was a decrease in absorption, photo-bleaching also caused a significant increase in the spectral slope parameter of 0.004 nm−1.  相似文献   
997.
Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a freshwater tidal marsh along the Scheldt estuary (Belgium), covering oxygen, nutrients (N, P and Si), carbon, chlorophyll, suspended matter, chloride and sulfate. The role of seepage from the marsh was also investigated. A ranking between the parameters revealed that oxygenation was the strongest effect of the marsh on the estuarine water. Particulate parameters showed overall import. Export of dissolved silica (DSi) was more important than exchange of any other nutrient form. Export of DSi and import of total dissolved nitrogen (DIN) nevertheless contributed about equally to the increase of the Si:N ratio in the seepage water. The marsh had a counteracting effect on the long term trend of nutrient ratios in the estuary.  相似文献   
998.
Suspended particles collected from surface seawater during the SEEDS II (Subarctic Iron Experiment for Ecosystem and Dynamics Study II) experiment were analyzed individually using an electron probe X-ray micro analyzer and characterized by size and elemental composition. Their numbers, relative abundances, and relative particle volume all showed clear differences between samples collected inside vs. outside the phytoplankton bloom that developed following the addition of iron. Throughout the study, Si-rich, Ca-rich and Organic particles were dominant and their number increased inside the fertilized patch; these particles accounted for 21%, 13% and 58% of the particles examined, respectively. Si-rich or Ca-rich particles commonly consisted of fragments of diatom frustules and coccolithophorids. There was consistently greater percentage of Ca-rich particles and lower percentage of Si-rich particles inside the patch than outside of it in number, but both types of these particles apparently occupied a larger volume inside the patch than outside of it. Organic particles, that showed having peaks in smaller diameter particles, increased apparently inside the patch with time after iron fertilization. The Organic particles had a more diverse mixture of both bio-related and crustal trace elements than the other types of particles. These results suggest that the increase in suspended particles following the iron enrichment was due to a combination of detrital material and live phytoplankton.  相似文献   
999.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) were studied approximately weekly during spring and summer 2003 and 2004 in the Gulf of Trieste (northern Adriatic Sea) in order to track the temporal variations and differences between two years. In parallel, particulate organic carbon (POC) and particulate nitrogen (PN), phytoplankton biomass (chlorophyll a), and N and P nutrients were monitored. All studied parameters, especially N and P nutrients and chlorophyll a, showed higher concentrations and larger variability in spring 2004. As a consequence the macroaggregates were produced in late spring 2004. The C and N isotope composition of POM was not directly linked to phytoplankton biomass dynamics. The δ13CPOC values covaried with temperature. In 2004, δ13CPOC variations followed the δ15NPN values as well as the δ13CDIC values which were probably more dependent on the photosynthetic use of 12C. Variations in δ15NPOM values were most probably the consequence of variations in N nutrient sources used in phytoplankton assimilation. The significant correlation between δ15NPN values and nitrate concentrations in 2004 implies intense nitrate assimilation in the presence of higher nitrate concentration. This suggests nitrate as the key nutrient in the »new primary production«, later producing macroaggregates with a mean δ13C and δ15N values of − 19‰ and 5‰, respectively. A low fractionation factor ε, < 1‰, lower than that reported in other marine and lacustrine systems, was found probably to be a consequence of distinct phytoplankton species, i.e. several classes of autotrophic nanoflagellates, and specific growth conditions present in the Gulf of Trieste. The tentative use of C isotope composition of POM revealed a higher contribution of allochthonous organic matter in 2004 compared to 2003 due to higher riverine inflow.  相似文献   
1000.
Surface sediment samples from a matrix of fifty-five sites covering virtually the entire Bohai Sea (Bohai), China were analyzed for total organic carbon (TOC), total nitrogen (TN), n-alkanes, unresolved complex mixture (UCM), biomarkers and stable carbon isotopic composition (δ13C), and principal component analysis was performed for source identification of organic matter (OM). The distribution of organic carbon correlated well with sediment grain size with the finest sediments having the highest concentration, suggesting the influence of hydrodynamics on the accumulation of sedimentary organic matter (SOM). The corrected TOC/ON (organic nitrogen) ratios and δ13C indicated mixed marine and terrestrial sources of SOM. Results suggested that δ13C could be used as a potential indicator to observe the dispersion of Huanghe-derived sediments in Bohai. Total n-alkane concentrations varied over 10-fold from 0.39 to 4.94 μg g− 1 (dry weight) with the maximum terrigenous/aquatic alkane ratio observed at the Huanghe River Estuary (HRE) due to more higher plant OM from riverine inputs. C12–C22 n-alkanes with even-to-odd predominance were observed in several central-eastern Bohai sites. The HRE and its adjacent area is the main sink for the Huanghe river-derived OC. The ubiquitous presence of UCM, biomarkers (hopanes and steranes) and PCA results indicated the presence of petroleum contamination in Bohai, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号