首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10576篇
  免费   1553篇
  国内免费   1554篇
测绘学   848篇
大气科学   3068篇
地球物理   1878篇
地质学   2936篇
海洋学   826篇
天文学   111篇
综合类   582篇
自然地理   3434篇
  2024年   33篇
  2023年   107篇
  2022年   316篇
  2021年   457篇
  2020年   451篇
  2019年   531篇
  2018年   418篇
  2017年   578篇
  2016年   544篇
  2015年   574篇
  2014年   675篇
  2013年   1042篇
  2012年   617篇
  2011年   671篇
  2010年   559篇
  2009年   675篇
  2008年   689篇
  2007年   670篇
  2006年   603篇
  2005年   552篇
  2004年   428篇
  2003年   375篇
  2002年   320篇
  2001年   267篇
  2000年   244篇
  1999年   205篇
  1998年   196篇
  1997年   215篇
  1996年   125篇
  1995年   128篇
  1994年   107篇
  1993年   76篇
  1992年   62篇
  1991年   45篇
  1990年   29篇
  1989年   21篇
  1988年   22篇
  1987年   11篇
  1986年   14篇
  1985年   11篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
961.
In the United States, both scholars and practitioners have repeatedly emphasized the importance of “issue framing” for garnering public support for climate change policy. However, the debate frequently overlooks the importance of counter frames. For every framing attempt by advocates of climate policy, there will be a counter frame by the opponents of climate policy. How do counter frames influence the effectiveness of issue framing as a communication strategy? To answer this question, we report results from a survey experiment on a nationally representative sample of 1000 Americans on clean energy policy, a key policy issue in the public debate on climate change in the United States. Overall, we find that different combinations of positive and negative frames have remarkably little effect on support for clean energy policy. A follow-up on-line survey experiment with a convenience sample of 2000 Americans suggests that the counter frames are responsible for undermining the effects of the original frames.  相似文献   
962.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
963.
Although the importance of sustainable soil management is recognized, there are many threats to soils including widespread soil structural degradation. This reduces infiltration through the soil surface and/or the percolation of water through the soil profile, with important consequences for crop yields, nutrient cycling and the hydrological response of catchments. This article describes a broad‐scale modelling approach to assess the potential effect that improved agricultural soil management, through reduced soil structural degradation, may have on the baseflow index (BFI) of catchments across England and Wales. A daily soil–water balance model was used to simulate the indicative BFI of 45 696 thirty‐year model runs for different combinations of soil type, soil/field condition, land cover class and climate which encapsulate the variability across England and Wales. The indicative BFI of catchments was then calculated by upscaling the results by spatial weighting. WaSim model outputs of indicative BFI were within the 95% confidence intervals of the national‐average BFI values given for the Hydrology of Soil Type (HOST ? ) classes for 26 of the 28 classes. At the catchment scale, the concordance correlation coefficient between the BFI from the WaSim model outputs and those derived from HOST was 0·83. Plausible improvements in agricultural soil/field condition produced modest simulated increases of up to 10% in the indicative BFI in most catchments across England and Wales, although for much of southern and northern England the increases were less than 5%. The results suggest that improved soil management might partially mitigate the expected adverse effects of climate change on baseflow to rivers. Healthy, well‐functioning soils produce many additional benefits such as better agricultural yields and reduced pollutant movement, so improved soil management should provide win‐win opportunities for society, agricultural systems and the environment and provide resilience to some of the expected environmental impacts of climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
964.
Z. L. Li  Z. X. Xu  J. Y. Li  Z. J. Li 《水文研究》2008,22(23):4639-4646
Shift trend and step changes were detected for runoff time series in the Shiyang River basin, one of the inland river basins in north‐west China. Annual runoff data from eight tributaries as well as both annual and monthly runoff from the mainstream from 1958 to 2003 were used. Seven statistical test methods were employed to identify the shift trends and step changes in the study. Mann–Kendall test, Spearman's Rho test, linear regression and Hurst exponent were used to detect past and future shift trends for runoff time series, while the distributed‐free CUSUM test, cumulative deviations and the Worsley likelihood ratio test were used to detect step changes for the same time series. Results showed that the annual runoff from Zamu, Huangyang and Gulang rivers, as well as both annual and monthly runoff from the mainstream, show statistically significant decreasing trends. Future tendency of runoff for both tributaries and mainstream were consistent with that from 1958 to 2003. Step changes probably occurred in 1961 for the runoff from Huangyang, Gulang and Dajing rivers according to the Worsley likelihood ratio test, but no similar results were found using the other two test methods. Three change points (1979, 1974 and 1973) were detected for the mainstream using different methods. These change points were close to the years that reservoirs started to be operated. Both climate change and human activities, especially the latter, contributed to the decreasing runoff in the study area. Between 21% and 79% of the reduction in runoff from the mainstream was due to the impact of human activities during the past few decades. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
965.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
966.
Vegetation changes can significantly affect catchment water balance. It is important to evaluate the effects of vegetation cover change on streamflow as changes in streamflow relate to water security. This study focuses on the use of statistical methods to determine responses in streamflow at seven paired catchments in Australia, New Zealand, and South Africa to vegetation change. The non‐parametric Mann–Kendall test and Pettitt's test were used to identify trends and change points in the annual streamflow records. Statistically significant trends in annual streamflow were detected for most of the treated catchments. It took between 3 and 10 years for a change in vegetation cover to result in significant change in annual streamflow. Presence of the change points in streamflow was associated with changes in the mean, variance, and distribution of annual streamflow. The streamflow in the deforestation catchments increased after the change points, whereas reduction in streamflow was observed in the afforestation catchments. The streamflow response is mainly affected by the climate and underlying vegetation change. Daily flow duration curves (FDCs) for the whole period and pre‐change and post‐change point periods also were analysed to investigate the changes in flow regime. Three types of vegetation change effects on the flow regime have been identified. The relative reductions in most percentile flows are constant in the afforestation catchments. The comparison of trend, change point, and FDC in the annual streamflow from the paired experiments reflects the important role of the vegetation change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
967.
Studies in the past have tried to reproduce the mechanical behaviour of granular materials by proposing constitutive relations based on a common assumption that model parameters and parameters describing the properties, including gradation of individual grains are inevitably linked. However successful these models have proved to be, they cannot account for the changes in granular assembly behaviour if the grains start to break during mechanical loading. This paper proposes to analyse the relation between grading change and the mechanical behaviour of granular assembly. A way to model the influence of grain breakage is to use a critical state‐based model. The influence of the amount of grain breakage during loading, depending on the individual grain strength and size distribution, can be introduced into constitutive relations by means of a new parameter that controls the evolution of critical state with changes in grain size distribution. Experimental data from a calcareous sand, a quartz sand, and a rockfill material were compared with numerical results and good‐quality simulations were obtained. The main consequences of grain breakage are increased compressibility and a gradual dilatancy disappearance in the granular material. The critical state concept is also enriched by considering its overall relation to the evolution of the granular material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
968.
Located in the Loess Plateau of China, the Wuding River basin (30 261 km2) contributes significantly to the total sediment yield in the Yellow River. To reduce sediment yield from the catchment, large-scale soil conservation measures have been implemented in the last four decades. These included building terraces and sediment-trapping dams and changing land cover by planting trees and improving pastures. It is important to assess the impact of these measures on the hydrology of the catchment and to provide a scientific basis for future soil conservation planning. The non-parametric Mann–Kendall–Sneyers rank test was employed to detect trends and changes in annual streamflow for the period of 1961 to 1997. Two methods were used to assess the impact of climate variability on mean annual streamflow. The first is based on a framework describing the sensitivity of annual streamflow to precipitation and potential evaporation, and the second relies on relationships between annual streamflow and precipitation. The two methods produced consistent results. A significant downward trend was found for annual streamflow, and an abrupt change occurred in 1972. The reduction in annual streamflow between 1972 and 1997 was 42% compared with the baseline period (1961–1971). Flood-season streamflow showed an even greater reduction of 49%. The streamflow regime of the catchment showed a relative reduction of 31% for most percentile flows, except for low flows, which showed a 57% reduction. The soil conservation measures reduced streamflow variability, leading to more uniform streamflow. It was estimated that the soil conservation measures account for 87% of the total reduction in mean annual streamflow in the period of 1972 to 1997, and the reduction due to changes in precipitation and potential evaporation was 13%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
969.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
970.
Abstract

In the construction of global primitive equation models, based on the spherical harmonic method, two forms of truncation are in general use. Theoretical considerations suggest the triangular truncation method is superior, but the easily coded rhomboidal truncation is more commonly used. A verification experiment employing the Canadian Operational Spectral Model has been performed to determine if the theoretical superiority of the triangular truncation can be realized in practice. It was found that at least in the restricted case of extra‐tropical forecasts of less than 48 h, that the two truncation methods produced forecasts of equivalent accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号