首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
  国内免费   2篇
测绘学   8篇
大气科学   1篇
地球物理   17篇
地质学   42篇
海洋学   7篇
综合类   1篇
自然地理   31篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   17篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   10篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有107条查询结果,搜索用时 203 毫秒
21.
A gravity survey on the scale of 1: 250 000 was carried out in Block L2 located in the Lamu basin of south‐east Kenya in order to study tectonic features and find out favourable petroleum prospects in the block. This paper, through data processing and synthetic interpretation of the measured gravity data in the block, discusses characteristics of the gravity field and their geological implications, determines the fault system and the basement depth, analyses features of the main strata, divides structure units and predicts favourable petroleum zones. In the block, the regional gravity anomaly is mainly caused by the inclined Moho surface that rises in the east and subsides in the west topographically and the Bouguer gravity anomaly primarily reflects the superimposition of the gravity effect derived from the Moho surface and the basement relief. Two groups of faults extending NW (NWW) and NE (NEE) respectively are dominant in the block and their activities resulted in the framework of east‐west zoning and south‐north blocking. The basement depth greatly changes in an alternative high and low pattern. The Permian‐Triassic, Jurassic and Tertiary strata are extensively developed, while the Cretaceous is only developed in the east of the block. Structurally, the block can be divided into five units, of which the Tana sag shows excellent source‐reservoir‐seal associations and is a favourable target for future petroleum exploration.  相似文献   
22.
This paper presents a quantitative ecohydrological framework for predicting regional distribution patterns of woody species in dryland ecosystems. The framework is based on an existing stochastic model for the daily mass balance of water that represents the interactions between soils, climate, and vegetation. Individual species selection is based on an optimality trade-off hypothesis, which states that dryland vegetation patterns are constrained by maximization of water use and simultaneous minimization of water stress. The relative importance of water use and stress avoidance to the overall fitness of three Acacia species is determined from the heterogeneous basin, the Upper Ewaso Ng’iro river basin, of the central Kenya highlands. The model results indicate that overall fitness is more strongly influenced by water use than stress avoidance but that consideration of both stress avoidance and water use is critical to predicting basin-scale patterns of species distribution. We identify a linear trend in the frequency and intensity of storms with the same annual total using a basin-wide gauge precipitation dataset. After calibration, we apply the basin average linear trends in time for average rain per storm and storm arrival rates. The model results indicate the upslope migration of two species, Acacia tortilis and Acacia xanthophloea to areas with higher total rainfall. Lastly, we explore the modeled changes of species cover in the basin influenced by changes in rainfall total holding growing season rainfall variability constant and changes in growing season rainfall variability holding total rainfall constant. We find that changes in dryland species distribution patterns and relative abundance may be as sensitive to growing season rainfall variability as they are to changes in total rainfall amounts.  相似文献   
23.
The recent transformation of wetlands into farmland in East Africa is accelerating due to growing food-demand, land shortages, and an increasing unpredictability of climatic conditions for crop production in uplands. However, the conversion of pristine wetlands into sites of production may alter hydrological attributes with negative effects on production potential. Particularly the amount and the dynamics of plant available soil moisture in the rooting zone of crops determine to a large extent the agricultural production potential of wetlands. Various methods exist to assess soil moisture dynamics with Frequency Domain Reflectometry (FDR) being among the most prominent. However, the suitability of FDR sensors for assessing plant available soil moisture has to date not been confirmed for wetland soils in the region. We monitored the seasonal and spatial dynamics of water availability for crop growth in an inland valley wetland of the Kenyan highlands using a FDR sensor which was site-specifically calibrated. Access tubes were installed within different wetland use types and hydrological situations along valley transects and soil properties affecting soil moisture (organic C, texture, and bulk density) were investigated. There was little variation in soil attributes between physical positions in the valley, and also between topsoil and subsoil attributes with the exception of organic C contents. With a root mean squared error of 0.073 m3/m3, the developed calibration function of the FDR sensor allows for reasonably accurate soil moisture prediction for both within-site comparisons and the monitoring of temporal soil moisture variations. Applying the calibration equation to a time series of profile probe readings over a period of one year illustrated not only the temporal variation of soil moisture, but also effects of land use.  相似文献   
24.
《水文科学杂志》2013,58(5):899-908
Abstract

The SWAT model was used to investigate the impact of land-cover changes on the runoff of the River Nzoia catchment, Kenya. The model was calibrated against measured daily discharge, and land-cover changes were examined through classification of satellite images. Land-cover change scenarios were generated, namely the worst- and best-case scenarios. Historical land-cover change results showed that agricultural area increased from 39.6 to 64.3% between 1973 and 2001, while forest cover decreased from 12.3 to 7.0%. A comparison between 1970–1975 and 1980–1985 showed that land-cover changes accounted for a difference in surface runoff ranging from 55 to 68% between the two time periods. The land-cover scenarios used showed the magnitude of changes in runoff due to changes in the land covers considered. Compared to the 1980–1985 runoff, the land-cover scenarios generated changes in runoff of about ?16% and 30% for the best and worst case scenarios respectively.  相似文献   
25.
The effect of climate change on maize production in the semi-humid and semi-arid, agro-climatic zones III-IV of Kenya was evaluated using two General Circulation Models (GCMs): the Canadian Climate Center Model (CCCM) and the Geophysical Fluid Dynamics Laboratory (GFDL), as well as the CERES-Maize model. Long-term climate data was obtained from three meteorological stations situated in eastern, central and western regions of Kenya, while maize data was obtained from six sites within the regions. The climate scenarios were projected to the year 2030. Temperature increases of 2·29 and 2·89°C are predicted by the CCCM and GFDL, respectively. Rainfall levels are predicted to remain unchanged, but there are thought to be shifts in distribution. It is predicted that the short-rains season (October–January) will experience some increased rainfall, while the long-rains season (April–July) will show a decrease. Maize yields are predicted to decrease in zone III areas, while an increase is predicted in zone IV areas. However, the predicted changes in yields are low since they all fall below 500 kg ha−1, except the Homa Bay site. Thus, to counter the adverse effects of climate change on maize production, it may be necessary to use early maturing cultivars, practice early planting, and in eastern Kenya, shift to growing maize during the short-rains season.  相似文献   
26.
Two different Pan-African tectono-metamorphic events are recognised in the Taita Hill Tsavo East National Park/Galana river area, SE-Kenya (Mozambique belt) based on petrographic and geothermobarometric evidence. Structurally, this area can be subdivided into four units: (1) the easternmost part of the basement along the Galana river is characterized by subhorizontal slightly to the west and east dipping foliation planes. Migmatic paragneisses with intercalated marbles, calcsilicates and metapelites and bands of amphibolites are the dominant rock type. (2) The western part of the Galana river within the Tsavo East National Park is a ca. 25 km wide shear zone with subvertical foliation planes. The eastern part shows similar rocks as observed in unit 1, while towards west, metasedimentary units become rare and the main rock types are tonalitic gneisses with intercalated amphibolites. (3) A 10 km wide zone (Sagala Hills zone) between the strike slip zone (unit 2) and the Taita Hills (unit 4) is developed. This zone is characterized by elongated and folded felsic migmatic amphibole and garnet bearing orthogneiss bodies with intercalated bands of mafic rocks. (4) The Taita Hills are a slightly to the N dipping nappe stack. The main rock type in the Taita Hills are amphibole–biotite–plagioclase–quartz ± garnet ± clinopyroxene ± scapolite bearing migmatic gneisses with mafic bands. In the southern part, metapelites, marbles and some amphibolites are common.Although the geological structures are different in units 1 and 2, the calculated PT conditions are similar with peak PT of 760–820 °C and 7.5–9.5 kbar. Temperatures in unit 3 (Sagalla Hills zone) and unit 4 (Taita Hills) are slightly higher ca. 760–840 °C, but pressure is significantly higher, ranging from 10 to 12 kbar. Sillimanite growth around kyanite, garnet zonation pattern, mineral reaction textures, and PT calculations constrain a “clock-wise” PT-path with near isobaric cooling following the peak of metamorphism. The different PT conditions, tectonic setting, and a different age of metamorphism are evidence that units 1 and 2 (Galana river) belong to a different tectono-metamorphic event than unit 3 (Sagala Hills zone) and 4 (Taita Hills). The major shear zone (unit 2) marks a tectonic suture dividing the two different tectono-metamorphic domains. It is also likely that it played an important role during exhumation of the granulite facies rocks from units 3 and 4.  相似文献   
27.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
28.
Fairtrade was founded to alleviate poverty and economic injustice through a market-based form of solidarity exchange. Yet with the increasing participation of transnational food corporations in Fairtrade sourcing, new questions are emerging on the extent to which the model offers an alternative to the inimical tendencies of neoliberalism. Drawing on a qualitative research project of Kenyan Fairtrade tea, this paper examines how the process of corporate mainstreaming influences the structure and outcomes of Fairtrade, and specifically the challenges it poses for the realization of Fairtrade’s development aspirations. It argues firstly that whilst tea producers have experienced tangible benefits from Fairtrade’s social premium, these development ‘gifts’ have been conferred through processes marked less by collaboration and consent than by patronage and exclusion. These contradictions are often glossed by the symbolic force of Fairtrade’s key tenets - empowerment, participation, and justice - which simultaneously serve to neutralize critique and mystify the functions that Fairtrade performs for the political economy of development and neoliberalism. Second, building on recent critiques of corporate social responsibility, the paper explores how certain neoliberal rationalities are emboldened through Fairtrade, as a process of mainstreaming installs new metrics of governance (standards, certification, participation) that are at once moral and technocratic, voluntary and coercive, and inclusionary and marginalizing. The paper concludes that these technologies have divested exchange of mutuality, as the totemic features of neoliberal regulation - standards, procedures and protocols - increasingly render north south partnerships ever more virtual and depoliticized.  相似文献   
29.
In the arid zone of central Turkana, north-western Kenya, where soil salinity affects 15–20% of the rangelands, growth performances of trees planted in saline soil rehabilitation trials have not been evaluated. Tree-planting trials have emphasised exotic species over indigenous ones. However, advantages and disadvantages of promoting exotic tree species have not been examined. The current study was aimed at evaluating growth performance of seven exotic and nine indigenous tree species used in saline soil rehabilitation trials. The tree species were established from 6-month-old saplings using microcatchments (FT1) from 1988 through 1990 and pitting treatment (FT2) from 1989 through 1992. The soils in FT1 and FT2 treatments were moderately to highly saline. The exotic tree species produced greater cover and volume during the first year (FT1) but by the second year, production was not sustained due to greater mortality (FT1 & FT2). The indigenous species in general had higher survival rates. Relative growth rates (RGR) of exotic and indigenous species did not differ (FT1 & FT2). Tree mortality was negatively correlated with RGR for exotic species in FT1 but not for indigenous ones. However, changes in plant performance were not in response to salinity alone. Rather, water scarcity superimposed on soil salinity might have influenced plant growth performance. Greater water and salinity stress and subsequently greater mortality in exotic species provided a more convincing reason for promotion of indigenous tree species. In the future, knowledge of salinity distribution and selection of indigenous species to match this will be a better way of rehabilitating sites affected by soil salinity in the arid zone of central Turkana, north-western Kenya.  相似文献   
30.
Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system.This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号