首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   70篇
  国内免费   66篇
测绘学   25篇
大气科学   1篇
地球物理   17篇
地质学   292篇
海洋学   7篇
天文学   1篇
综合类   7篇
  2022年   1篇
  2021年   8篇
  2020年   26篇
  2019年   20篇
  2018年   16篇
  2017年   30篇
  2016年   32篇
  2015年   26篇
  2014年   23篇
  2013年   21篇
  2012年   32篇
  2011年   21篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1990年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
331.
Bromine and iodine are important tracers for geochemical and environmental studies. In this study, a rapid acid digestion (HNO3 + HF) with ammonia dilution for the simultaneous determination of bromine and iodine in soils and sediments using ICP‐MS was developed. The recoveries of Br and I were controlled by the synergic effect of temperature and time. It took only 15 min at 140 °C for the complete recovery of Br and I in sediment (GSD‐2) and soil (GSS‐24) reference materials, which is a process that needs 2–6 h at 90 °C. A serious loss of Br and I was found at a higher digestion temperature of 190 °C. A 5% v/v NH4OH dilution effectively eliminated the memory effects and stabilised the signals of Br and I. Moreover, ammonia dilution also avoided the corrosiveness of HF on the sample introduction system and torch of ICP‐MS. Tellurium is a more suitable internal standard element than In in the ammonia medium. To avoid the adsorption of residues of dissolution on Te, addition of Te should be carried out after centrifuging the solution. The developed method was successfully applied to determine Br and I in fifty‐three Chinese soil and sediment reference materials. This simple method shows great potential for the rapid determination of Br and I in large batches of geological and environmental samples commonly analysed for mineral exploration and environmental geochemistry studies.  相似文献   
332.
用5709萃淋树脂还原色层法分离富集高纯氧化铕中微量稀土杂质,随后用顺序扫描等离子体光电光谱法测定。色层分离的条件:上柱稀土基体的质量浓度为20g/L,pH2~3,流速为25mL/min,洗脱液为6mol/L的HCl溶液。共测定铈、镨、钕、钐、钆和镝6种稀土杂质。回收率为89%~105%,相对标准偏差≤4%。方法可用于荧光级氧化铕中杂质稀土的测定  相似文献   
333.
A procedure is described for the determination of thirty‐seven minor and trace elements (LILE, REE, HFSE, U, Th, Pb, transition elements and Ga) in ultramafic rocks. After Tm addition and acid sample digestion, compositions were determined both following a direct digestion/dilution method (without element separation) and after a preconcentration procedure using a double coprecipitation process. Four ultramafic reference materials were investigated to test and validate our procedure (UB‐N, MGL‐GAS [GeoPT12], JP‐1 and DTS‐2B). Results obtained following the preconcentration procedure are in good agreement with previously published work on REE, HFSE, U, Th, Pb and some of the transition elements (Sc, Ti, V). This procedure has two major advantages: (a) it avoids any matrix effect resulting from the high Mg content of peridotite, and (b) it allows the preconcentration of a larger trace element set than with previous methods. Other elements (LILE, other transition elements Cr, Mn, Co, Ni, Cu, Zn, as well as Ga) were not fully coprecipitated with the preconcentration method and could only be accurately determined through the direct digestion/dilution method.  相似文献   
334.
This study uses MC‐ICP‐MS for the precise analysis of the stable tin isotopic composition in ore minerals of tin (cassiterite, stannite), tin metal and tin bronze. The ultimate goal is to determine the provenance of tin in ancient metal objects. We document the isotope compositions of reference materials and compare the precision of different isotope ratios and the accuracy of different procedures of mass fractionation correction. These data represent a base with which isotopic data of future studies can be directly compared. The isotopic composition of cassiterite and stannite can be determined after reduction to tin metal and bronze, respectively. Both metals readily dissolve in HCl, but while the solutions of tin metal can be directly measured, the bronze solutions must be purified with an anion exchanger. The correction of the mass bias is best performed with an internal Sb standard and an empirical regression method. A series of Sn isotope determinations on commercially available mono‐element Sn solutions as well as reference bronze materials and tin minerals show fractionations ranging from about ?0.09‰ to 0.05‰/amu. The combined analytical uncertainty (2s) was determined by replicate dissolutions of reference materials of bronze (BAM 211, IARM‐91D) and averages at about 0.005‰/amu.  相似文献   
335.
This work provides a measurement procedure for the complete digestion of rock samples containing refractory minerals such as zircon and chromite. Their dissolution by wet acid digestion is often incomplete but, although providing complete digestions, alkali fusion techniques can result in solutions with a high blank and total dissolved solid content. It was established by the systematic study with reference material trachyandesite MTA‐1 that a 1:6 sample to sodium peroxide (Na2O2) ratio is conservative for the complete digestion and recovery of all the analytes especially those contained in zircon. The sample decomposition time was 120 min for the zircon‐bearing rhyolite reference material MRH‐1. Complete digestion of chromite was obtained in the harzburgite RM MUH‐1. The sample solutions were stable for at least 1 year. Accurate measurements of SiO2, Al2O3, TiO2, P2O5 and K2O could be made with ICP‐MS by not discarding the supernatant of the sinter solution and by using geological reference materials for external calibration. HF digestions are slow, not universal, and may form new mineral/phases that are insoluble under high temperature conditions. The validated sample decomposition procedure combined with ICP‐MS presents an alternative to the use of HF in routine analysis of difficult to digest geological materials.  相似文献   
336.
李冰  尹明 《岩矿测试》2000,19(2):101-105
试验了100~700ug/LBa的氧化物对Eu产生的干扰,干扰程度与Ba量呈线性,其相关系数r在0.9986~0.9995。用模拟样品溶液对不同含量的Ba对Eu的干扰采取了简单的数学方法校正,校正后的结果在误差允许范围之内。.对小麦和人发标准物质中Ba氧化物对Eu的干扰及校正效果进行了比较。结果表明,在所使用的仪器条件下,这两个标准物质中的Ba对Eu的干扰必须校正。研究了ug/L水平的轻稀土氧化物对重稀  相似文献   
337.
东昆仑地区出露大量呈带状分布的中生代花岗岩,是我国一条巨型花岗质岩浆岩带,它的发育与该地区岩石圈动力学演化有着密切联系.对东昆仑造山带东段南缘洪水川地区的科科鄂阿龙石英闪长岩体的岩相学、岩石地球化学和LA-ICP-MS锆石U-Pb同位素年代学研究结果显示,岩石具有3组谐和锆石年龄:第一组年龄大于402Ma,为捕获围岩的锆石年龄;第二组年龄为243.9±3.0Ma(MSWD=0.94),代表该区玄武质岩浆底侵事件;第三组年龄为218.3±1.4Ma(MSWD=0.52),代表岩体的结晶年龄.地球化学分析表明该岩体具有高Sr,低Y、Yb,高Sr/Y比值,轻重稀土分异明显,Eu异常不明显,其微量元素显示出埃达克质岩石特征.其较低的Nb、Ta和较高的Mg=、Cr、Ni含量,高Nb/Ta比值,说明了在金红石稳定域内部分熔融形成的熔体交代了岩石圈地幔.岩体的年代学及地球化学特征表明,东昆仑地区在218Ma的晚三叠世时期发生了岩石圈地壳拆沉作用,它是早期俯冲形成的玄武质岩浆底侵而形成的加厚下地壳,在高压缺水的条件下相变为榴辉岩相并拆沉进入软流圈,部分熔融的熔体在上升过程中先与岩石圈地幔反应,然后与地壳围岩发生同化混染作用,最终形成了科科鄂阿龙石英闪长岩.  相似文献   
338.
辽宁四道沟热液金矿床中石英的稀土元素的特征及意义   总被引:20,自引:10,他引:20  
范建国  苏文超 《岩石学报》2000,16(4):587-590
本文用ICP-MS测定了辽宁四道沟金矿矿脉中石英及其中流体包裹体中的稀土元素含量,发现石英的稀土元素配分模式类似于其中流体包裹体的稀土元素配分模式,推断石英中的稀土元素主要赋存于注流体包裹体中,流体包裹体中的稀土元素了石英的稀土元素配分模式,原生包裹中的流体是和石英同源的,其稀土元素指示的是石英形成过程中流体的信息。而次生包裹体中的流体是石英形成后的流体活动产物,其稀土元素指示的是后期流体活动的信  相似文献   
339.
在华北板块北缘白乃庙岛弧岩浆活动带中发现了一套石榴石白云母花岗岩。锆石LA-ICP-MS U-Pb定年结果显示,该石榴石白云母花岗岩的结晶年龄为(500.8±2.4)Ma,为晚寒武世岩浆活动的产物。主量元素岩石地球化学特征方面:该岩体富硅、铝(w(SiO2)=72.50%~74.11%;w(Al2O3)=14.73%~16.43%),贫铁、镁、钙(w(TFeO)=0.67%~1.14%;w(MgO)= 0.09%;w(CaO)=0.30%~0.61%),为高分异花岗岩(分异指数DI=91.99~93.20);铝饱和指数均大于1.1,发育富铝矿物石榴石和白云母,为过铝质花岗岩,但并非S型花岗岩;综合认为该石榴石白云母花岗岩是一套富铝、贫铁镁钙的高分异钙碱性I型花岗岩。微量元素特征方面:稀土总量较低,轻重稀土分馏不明显,具有强烈的负Eu异常;具明显的稀土元素四分组效应;并且部分岩石样品的Nb、Ta含量较高,暗示该岩体是分异岩浆与流体作用的产物。该岩体可为Nb、Ta等稀有金属成矿提供必要的物质基础。  相似文献   
340.
西昆仑造山带南侧的麻扎-康西瓦缝合带,是古特提斯洋闭合的位置。慕士塔格-公格尔作为昆仑山的主峰,紧邻该缝合带的东北侧分布,主要岩性为花岗闪长岩和黑云母二长花岗岩。作者系统研究了两种岩性的地球化学及年代学特征,探讨了岩石成因,反演了古特提斯洋的构造演化历史。岩体岩浆锆石LA-ICP-MS U-Pb测年结果显示,花岗闪长岩和黑云母二长花岗岩的成岩年龄分别为(213.0±0.5)~(215.4±0.9)Ma和(220.6±0.5)~(222.1±0.4)Ma,是晚三叠世岩浆活动的产物。两种岩性均为高硅(w(SiO2)65%)、富碱(w(K2O+Na2O)6%)、钙碱性-高钾钙碱性、准铝质(A/CNK1),富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE)和重稀土(HREE)。微量元素组成特征、低锆石饱和温度及高分异指数显示慕士塔格-公格尔花岗岩体为高分异I型花岗岩。岩体锆石的εHf(t)值变化范围较小,为-4.46~-0.17,指示岩浆以壳源为主。综合研究表明,慕士塔格-公格尔花岗岩体可能是同碰撞造山环境下,老的下地壳受地幔热源影响部分熔融,形成的长英质壳源岩浆侵入地壳内部而冷却结晶形成。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号