首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   70篇
  国内免费   66篇
测绘学   25篇
大气科学   1篇
地球物理   17篇
地质学   292篇
海洋学   7篇
天文学   1篇
综合类   7篇
  2022年   1篇
  2021年   8篇
  2020年   26篇
  2019年   20篇
  2018年   16篇
  2017年   30篇
  2016年   32篇
  2015年   26篇
  2014年   23篇
  2013年   21篇
  2012年   32篇
  2011年   21篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1990年   1篇
排序方式: 共有350条查询结果,搜索用时 46 毫秒
261.
王峰 《中国地质》2021,48(1):207-228
龙岩宣和岩体是闽西南地区呈北东向弧形出露,最大的燕山期—加里东期复式岩体,但是有关该岩体的形成时代及成岩环境的认识仍存在分歧,进而制约了对闽西南地区构造环境的探讨.文章以出露于闽西南地区的宣和正长花岗岩为研究对象,在详细野外地质调查基础上,开展了岩石学、LA?ICP?MS锆石U?Pb地质年代学、岩石地球化学及Sr?Nd...  相似文献   
262.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   
263.
A rapid sample preparation procedure is described to determine trace element compositions of peridotites using LA‐ICP‐MS. Peridotite powders were fused with albite in a molybdenum–graphite assembly to obtain homogeneous glasses. Best conditions for the fusion procedure (heating at 1500–1550 °C for 10–15 min with a sample‐to‐flux ratio of 1:2) were constrained with melting experiments on two USGS reference materials, PCC‐1 and DTS‐2B. Mass fractions of first series transition elements, Ba and Pb, in quenched glasses of PCC‐1 and DTS‐2B are consistent with published data within 10% RSD. Three spinel peridotite xenoliths from eastern China were analysed following both our method and conventional solution ICP‐MS. Compared with solution ICP‐MS, the relative deviations of our method for most elements were within 10%, while for the REE, Ta, Pb, Th and U, the relative deviations were within 20%. In particular, volatile elements (e.g., Pb and Zn) are retained in the glass. Compared with conventional wet chemistry digestion, our method is faster. Additional advantages are complete sample fusion, especially useful for samples with acid‐resistant minerals (spinel and rutile), and long‐term conservation of glasses allowing unlimited repeated measurements with microbeam techniques. The same approach can be used for analyses of other mantle rocks, such as eclogites and pyroxenites.  相似文献   
264.
The complete dissolution of representative test portions of powdered rock samples for the determination of the mass fractions of trace elements by ICP‐MS relies either on aggressive and time‐consuming acid digestions or fusion/sintering with appropriate fluxes. Here, we evaluate a microwave oven dissolution method that employs a solution of NH4HF2 and HNO3. The entire procedure occurs in a closed vessel system and takes up to 4 h. In hundreds of digestions, the precipitation of fluorides was never observed. Replicate decomposition of 100 mg of twenty‐one international reference materials (RMs) of igneous rocks, and also one of a shale presented mostly satisfactory recoveries of forty‐one trace elements. Important exceptions were Zr and Hf in G‐2 and GSP‐2 (mean recoveries of ca. 70%), although for four other felsic rock RMs, the digestion was complete. For ultramafic rock RMs, we present Cr results that indicate quantitative dissolution of Cr‐bearing phases. We discuss the findings and conclude that advances in sample preparation of geological materials for instrumental analysis would benefit from a better understanding of how specific characteristics, such as composition and crystallinity of certain minerals, may affect their reactivity.  相似文献   
265.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   
266.
Fission‐track (FT) and (U–Th–Sm)/He (He) analyses are used to constrain the denudation pattern and history of the Kiso Range, a Japanese fault‐block mountain range which has been uplifted since ca 0.8 Ma. We obtained nine zircon FT ages ranging 59.3–42.1 Ma, 18 apatite FT ages ranging 81.9–2.3 Ma, and 13 apatite He ages ranging 36.7–2.2 Ma. The apatite FT and He ages are divided into an older group comparable to the zircon FT age range and a younger group of <18 Ma. The younger ages are interpreted as a reflection of uplift of the Kiso Range because they were obtained only to the east of the Seinaiji‐touge Fault, and the event age estimated from apatite FT data is consistent with the timing of the onset of the Kiso Range uplift. On the basis of the distribution of the younger ages, we propose westward tilting uplift of the Kiso Range between the boundary fault of the Inadani Fault Zone and Seinaiji‐touge Fault, which implies a model of bedrock uplift that is intermediate between two existing models: a pop‐up model in which the Kiso Range is squeezed upward between the two faults and a tilted uplift model which assumes that the Kiso Range is uplifted and tilted to the west by the Inadani Fault Zone. The original land surface before the onset of uplift/denudation of the Kiso Range is estimated to have been uplifted to an elevation of 2700–4900 m. We estimated denudation rates at 1.3–4.0 mm/y and maximum bedrock uplift rates at 3.4–6.1 mm/y since ca 0.8 Ma. The Seinaiji‐touge fault is interpreted as a back thrust of the west‐dipping Inadani Fault Zone. The older group of apatite FT and He ages is interpreted to reflect long‐term peneplanation with a probable denudation rate of <0.1 mm/y.  相似文献   
267.
In this contribution, we report Hf isotopic data and Lu and Hf mass fractions for thirteen Chinese rock reference materials (GBW07 103–105, 109–113 and 121–125, that is GSR 1–3, 7–11 and 14–18, respectively) that span a broad compositional range. Powdered samples were spiked with a 176Lu‐180Hf enriched tracer and completely digested using conventional HF, HNO3 and HClO4 acid dissolution protocols. Fluoride salts were dissolved during a final H3BO3 digestion, and chemical purification was performed using a single Ln resin. All measurements were carried out on a MC‐ICP‐MS. This work provides the first comprehensive report of the Lu‐Hf isotopic composition of Chinese geochemical rock reference materials, and results indicate that they are of comparable quality to the well‐characterised and widely used USGS and GSJ rock reference materials.  相似文献   
268.
There is currently a lack of well‐characterised matrix‐matched reference materials (RMs) for forensic analysis of U‐rich materials at high spatial resolution. This study reports a detailed characterisation of uraninite (nominally UO2+x) from the Happy Jack Mine (UT, USA). The Happy Jack uraninite can be used as a RM for the determination of rare earth element (REE) mass fractions in nuclear materials, which provide critical information for source attribution purposes. This investigation includes powder X‐ray diffraction (pXRD) data, as well as major, minor and trace element abundances determined using a variety of micro‐analytical techniques. The chemical signature of the uraninite was investigated at the macro (cm)‐scale with micro‐X‐ray fluorescence (µXRF) mapping and at high spatial resolution (tens of micrometre scale) using electron probe microanalysis (EPMA) and laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analyses. Based on EPMA results, the uraninite is characterised by homogeneous UO2 and CaO contents of 91.57 ± 1.49% m/m (2s uncertainty) and 2.70 ± 0.38% m/m (2s), respectively. Therefore, CaO abundances were used as the internal standard when conducting LA‐ICP‐MS analyses. Overall, the major element and REE compositions are homogeneous at both the centimetre and micrometre scales, allowing this material to be used as a RM for high spatial resolution analysis of U‐rich samples.  相似文献   
269.
The distribution of halogens in various fractions of humic substances (HS), separated by their molecular weight, was found to be different for the different halogens. This was demonstrated for chlorine, bromine, and iodine in sewage and brown water samples by applying inductively coupled plasma mass spectrometry coupled with size‐exclusion chromatography. Quantification of the different fractions of iodinated humic substances was obtained by quadrupole mass spectrometry in connection with the isotope dilution technique using an 129I‐enriched spike solution. Quantitative analysis was not possible for the corresponding chlorine and bromine species because of spectrometric interferences in the quadrupole instrument. The ageing of HS/halogen species was followed with respect to possible transformations of these species in a ground and sewage water sample up to eight weeks. Even if a distinct structural variation of the humic substance was observed with time by measuring the UV absorption, chlorine remained in the same molecular weight fraction and only a small change was found for the HS/bromine species after eight weeks. In contrast to these findings a substantial transformation of HS/iodine compounds took place, which demonstrated that the transfer probability of halogens from one to another HS fraction is increased with decreasing strength of the halogen bond to carbon. By comparing the results of an original sewage water sample with a filtered one and with another one which was enriched by microorganisms cultivated from the same original sample, a strong microbiological influence on the transformation of HS/iodine species was found. A quantitative balance of the corresponding HS/iodine fractions was calculated for an ageing period of eight weeks showing that iodine was preferably transferred to newly formed UV active HS substances of high molecular weight. In total, no iodine was released from the humic substances.  相似文献   
270.
In this study, we report both 143Nd/144Nd and 147Sm/144Nd values in twelve minerals (apatite, titanite, monazite and eudialyte) based on analyses over 4 years using LA‐MC‐ICP‐MS. The positive correlation between the measured βSm and βNd (r2 = 0.9981) over this time in our laboratory demonstrates the excellent long‐term stability of the method. Compared with the normal method, Sm and Nd signal intensities were improved by a factor of 2.9 with the use of X skimmer and Jet sample cones in combination with the addition of nitrogen at 3–6 ml min?1 to the central gas flow. The enhancement of signal intensity benefits the accurate in situ determination of the Sm‐Nd isotopes of samples poor in these elements. 143Nd/144Nd values were also determined in two manganese nodules and GSMC Co‐rich crust with low mass fractions of Nd (94–293 μg g?1). Generally, most of the obtained Sm‐Nd isotopic compositions in these geological materials are consistent with published values. ‘External reproducibility’ (2s) of 143Nd/144Nd and 147Sm/144Nd was typically better than 0.06‰ and 2.5‰, respectively, demonstrating that the Durango, Otter Lake, NW‐1 and MAD apatites, the Khan, and OLT‐1 titanites, MGMH#117531 monazite and LV01 eudialyte are promising candidate reference materials for in situ Sm‐Nd isotopic determinations. The Trebilcock, Mae Klang and 44069 monazites are only suitable for in situ Nd isotopic determinations because of their heterogeneous Sm/Nd compositions. The heterogeneous Sm‐Nd composition of titanite BLR‐1 demonstrates that it is not a suitable reference material for in situ Sm‐Nd isotopic determinations. Deep‐sea samples (NOD‐A‐1 and NOD‐P‐1 manganese nodule, GSMC Co‐rich crust) with low mass fractions of Nd also show homogenous Nd isotopic compositions. Sm‐Nd isotopic ratios of a monazite (MQG‐22) from the North China Craton were measured as a case study and gave a 147Sm‐143Nd isochron age of 1792 ± 35 Ma (MSWD = 3.2) consistent with the published metamorphic age of the host metasedimentary rocks. The results for both candidate reference materials and geological samples demonstrate that the in situ LA‐MC‐ICP‐MS analytical protocol described is feasible and robust for research in geological evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号