首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   86篇
  国内免费   19篇
测绘学   77篇
大气科学   26篇
地球物理   381篇
地质学   64篇
海洋学   3篇
综合类   11篇
自然地理   16篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   14篇
  2019年   40篇
  2018年   22篇
  2017年   26篇
  2016年   24篇
  2015年   26篇
  2014年   39篇
  2013年   29篇
  2012年   22篇
  2011年   32篇
  2010年   26篇
  2009年   28篇
  2008年   15篇
  2007年   36篇
  2006年   29篇
  2005年   21篇
  2004年   22篇
  2003年   19篇
  2002年   8篇
  2001年   17篇
  2000年   5篇
  1999年   15篇
  1998年   13篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1993年   4篇
  1992年   3篇
  1990年   1篇
排序方式: 共有578条查询结果,搜索用时 31 毫秒
371.
Masonry buildings are often characterized by geometric irregularities. In many cases, such buildings meet global regularity requirements provided by seismic codes, but they are composed by irregular walls with openings. The latter are masonry walls characterized by (i) openings of different sizes, (ii) openings misaligned in the horizontal and/or vertical direction, or (iii) a variable number of openings per story. An irregular layout of openings can induce not only a nonuniform distribution of gravity loads among masonry piers but also unfavorable damage localizations resulting in a premature collapse of the wall and hence a higher seismic vulnerability. This paper is aimed at providing a simplified methodology to assess the effects of irregularities on the in‐plane seismic capacity of unreinforced masonry (URM) walls with openings. To this end, a macroelement method was developed and validated through experimental results available in the literature. The proposed methodology was based on the quantification of wall irregularities by means of geometric indices and their effects on seismic capacity of URM walls with openings through both sensitivity and regression analyses. Sensitivity analysis was based on a high number of static pushover analyses and allowed to assess variations in key seismic capacity parameters. Regression analysis let to describe each capacity parameter under varying irregularity index, providing empirical models for seismic assessment of irregular URM walls with openings. The in‐plane seismic capacity was found to be significantly affected by wall irregularities, especially in the case of openings with different heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
372.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
373.
Multi‐storey buildings made of cross‐laminated timber panels (X‐lam) are becoming a stronger and economically valid alternative in Europe compared with traditional masonry or concrete buildings. During the design process of these multi‐storey buildings, also their earthquake behaviour has to be addressed, especially in seismic‐prone areas such as Italy. However, limited knowledge on the seismic performance is available for this innovative massive timber product. On the basis of extensive testing series comprising monotonic and reversed cyclic tests on X‐lam panels, a pseudodynamic test on a one‐storey X‐lam specimen and 1D shaking table tests on a full‐scale three‐storey specimen, a full‐scale seven‐storey building was designed according to the European seismic standard Eurocode 8 and subjected to earthquake loading on a 3D shaking table. The building was designed with a preliminary action reduction factor of three that had been derived from the experimental results on the three‐storey building. The outcomes of this comprehensive research project called ‘SOFIE – Sistema Costruttivo Fiemme’ proved the suitability of multi‐storey X‐lam structures for earthquake‐prone regions. The buildings demonstrated self‐centring capabilities and high stiffness combined with sufficient ductility to avoid brittle failures. The tests provided useful information for the seismic design with force‐based methods as defined in Eurocode 8, that is, a preliminary experimentally based action reduction factor of three was confirmed. Valid, ductile joint assemblies were developed, and their importance for the energy dissipation in buildings with rigid X‐lam panels became evident. The seven‐storey building showed relatively high accelerations in the upper storeys, which could lead to secondary damage and which have to be addressed in future research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
374.
Fundamental period of vibration appears to be one of the most critical parameter for the seismic design of buildings because this period strongly affects the magnitude of seismic forces. In this paper, an empirical formula for estimating the fundamental period of reinforced concrete structures is recommended, on the basis of the vibration analysis of 20 different real building configurations. These structures have already been constructed in Greece, and they are analyzed by using in detail 3‐D finite element models and modal eigenvalue analysis. These models take into account the presence of external and internal infill walls, which are usually ignored as nonstructural elements. This neglect leads to unreliable evaluation of period because the infill walls' contribution to the lateral stiffness and therefore to the fundamental period of vibration is also ignored. Furthermore, taking into account that the flexibility of soil elongates the fundamental period, the soil–structure interaction effect is also considered. To achieve a unique, simple, and effective empirical expression for the fundamental period of vibration, a comprehensive nonlinear regression analysis is applied for the datasets of buildings under consideration. This empirical expression is also compared with the similar expressions from the pertinent literature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
375.
为了保证高层建筑物施工测量的高程精度,文中采用全站仪天顶距法和悬挂钢尺法两种方法进行施工高程基准的竖向传递.文中介绍两种方法的具体操作流程以及影响精度的因素,并以某高层建筑物为例,利用测量数据对两种方法进行对比及精度分析,证明两种方法均具有较高的精度,各有优势,均能广泛应用于高层建筑物施工测量中.  相似文献   
376.
Consecutive earthquakes occurred on October 23rd, 2011 in Ercis and on November 9th, 2011 in Edremit that are townships located 90 km and 18 km far from Van city in Turkey, respectively. A total of 28,000 buildings were damaged or collapsed in the city center and the surrounding villages after the Ercis earthquake. This number reached 35,000 after the Edremit earthquake. In the area where the earthquakes occurred, almost all the reinforced concrete buildings were affected.This study presents field observations of damages on reinforced concrete buildings due to the consecutive earthquakes that occurred in Van, Turkey. Damages appearing in the buildings may occur due to several reasons such as site effect, poor construction quality, poor concrete strength, poor detailing in beam-column joints, detailing of stronger beam than column, soft stories, weak stories, inadequate reinforcement, short lap splices, incorrect end hook angle, and short columns. Aftershocks also caused progressive damages on the buildings within 17 days after the earthquakes. According to the results of this study, most of the damaged buildings were not designed and constructed according to the Turkish earthquake code, the so-called Specification for Buildings to be built in Seismic Zones.  相似文献   
377.
芦山7.0级强烈地震砖混民居震害调查与分析   总被引:1,自引:0,他引:1  
2013年4月20日四川省芦山县发生Ms7.0级强烈地震,造成了大量民居建筑的严重破坏甚至倒塌.本文通过对芦山地震中民居建筑的震害调查,系统总结了砖混民居这一量大面广建筑结构的破坏形式和损伤机制.汶川地震后的新建民居在抗震措施方面有较大幅度的提高,比如大多具有抗震构造措施、采用240mm承重墙等,因此整体震害较轻,但是新建居民在建设房屋时,抗震构造措施的布局有很大的随意性,具体表现在平面内布置不足和竖向分布不规则,导致整体约束效果下降,进而结构发生破坏.雅安地区多处于山坡软土地带、建筑物多临近河流,同时民居建筑的基坑开挖普遍较浅,处理不当,在地震过程中出现地基不均匀沉降,基础遭到破坏,并造成上部结构破坏.相比之下,地基得到妥善处理、严格按照抗震规范设计的民居,震害十分轻微.本文建议继续增强对居民的防震减灾宣传,普及民居抗震构造知识,进行民居的实用抗震措施和地基处理方法的研究,并针对各类民居震害情况,研究有效、经济和快速的加固改造技术.  相似文献   
378.
针对钢筋混凝土高层建筑抗震时程分析输入地震波选择问题,以《建筑抗震设计规范》(GB 50011-2016)设计谱为目标谱,将满足谱匹配原则的加权调幅选波方法与国内学者建议的其它输入地震波选择方法进行了对比研究。以3栋钢筋混凝土高层建筑(15层、30层和44层)为实例,针对8度罕遇地震作用和Ⅱ类场地条件,将上述方法建议的各7条地震波输入结构进行弹塑性时程分析。以结构最大层间位移角均值沿楼层分布为比较参数。结果表明:加权调幅法可用于钢筋混凝土高层建筑抗震时程分析,可以较好地降低结构地震反应均值的离散性。在8度罕遇地震作用条件下,以不同学者建议选择的地震波为输入,高层建筑时程分析结果仍呈现出较大的不同。  相似文献   
379.
A three-stories, base-isolated building located in Rapolla (Potenza, Italy) was tested with a snap-back experiment. Free-field measures were performed using 3D seismometers, located at 10 and 50 m from the buildings in direction of motion and at 10 m from the building in direction transverse to the motion. At each measurement point it was possible to separate the soil amplification effects from two source terms, due to the base-isolated building and to the reaction block. The ground motion was noticeable: at 10 m in the longitudinal direction it was comparable with a small size, near-field earthquake.  相似文献   
380.
In all European countries the will to conserve the building heritage is very strong. Unfortunately, large areas in Europe are characterised by a high level of seismic hazard and the vulnerability of ancient masonry structures is often relevant. The large number of monumental buildings in urban areas requires facing the problem with a methodology that can be applied at territorial scale, with simplified models which need little easily obtainable, data. Within the Risk-UE project, a new methodology has been stated for the seismic vulnerability assessment of monumental buildings, which considers two different approaches: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. Both models can be used with data of different reliability and depth. This paper illustrates the theoretical basis and defines the parameters of the two models. An application to an important church is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号