首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   10篇
  国内免费   2篇
测绘学   75篇
地球物理   34篇
地质学   15篇
海洋学   2篇
天文学   3篇
综合类   6篇
自然地理   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   11篇
  2008年   7篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1977年   1篇
排序方式: 共有137条查询结果,搜索用时 109 毫秒
131.
A unified global height reference system as a basis for IGGOS   总被引:1,自引:0,他引:1  
The definition of a global height reference system is based on a mean sea surface, gravity field parameters, and a three-dimensional terrestrial reference frame (TRF). Tide gauge records, satellite altimetry, gravity measurements on Earth and from space, TRF coordinates, and spirit levelling have to be combined for the realization of the vertical reference frame. Observations and parameters have to be consistent with respect to the used standards, conventions and models. They have to provide globally unified reference surfaces (geoid or quasigeoid, respectively, and mean sea surface). The continental reference systems of Europe (EUREF, ECGN) and South America (SIRGAS) are considering these requirements in their strategies. They are presented here, and slightly different definitions and realizations for a globally unified height reference system are discussed.  相似文献   
132.
European geodetic very long baseline interferometry (VLBI) sessions (also known as EUROPE sessions) have been carried out on a regular basis for the past 15 years to study relative crustal motions within Europe. These sessions are based on observations of extragalactic radio sources, which serve as distant fiducial marks to establish an accurate and stable celestial reference frame for long-term geodetic measurements. The radio sources, however, are not always point-like on milliarcsecond scales, as VLBI imaging has revealed. In this work, we quantify the magnitude of the expected effect of intrinsic source structure on geodetic bandwidth synthesis delay VLBI measurements for a subset of 14 sources regularly observed during the EUROPE sessions. These sources have been imaged at both X-band (8.4 GHz) and S-band (2.3 GHz) based on dedicated observations acquired with the European VLBI Network (EVN) in November 1996. The results of this calculation indicate that the reference source 0457+024 causes significant structural effects in measurements obtained on European VLBI baselines (about 10 picoseconds on average), whereas most of the other sources produce effects that are only occasionally larger than a few picoseconds. Applying the derived source structure models to the data of the EUROPE5-96 session carried out at the same epoch as the EVN experiment shows no noticeable changes in the estimated VLBI station locations.  相似文献   
133.
O. Titov 《Journal of Geodesy》2007,81(6-8):455-468
This paper evaluates the effect of the accuracy of reference radio sources on the daily estimates of station positions, nutation angle offsets, and the estimated site coordinates determined by very long baseline interferometry (VLBI), which are used for the realization of the international terrestrial reference frame (ITRF). Five global VLBI solutions, based on VLBI data collected between 1979 and 2006, are compared. The reference solution comprises all observed radio sources, which are treated as global parameters. Four other solutions, comprising different sub-sets of radio sources, were computed. The daily station positions for all VLBI sites and the corrections to the nutation offset angles were estimated for these five solutions. The solution statistics are mainly affected by the positional instabilities of reference radio sources, whereas the instabilities of geodetic and astrometric time-series are caused by an insufficient number of observed reference radio sources. A mean offset of the three positional components (Up, North, East) between any two solutions was calculated for each VLBI site. From a comparison of the geodetic results, no significant discrepancies between the respective geodetic solutions for all VLBI sites in the Northern Hemisphere were found. In contrast, the Southern Hemisphere sites were more sensitive to the selected set of reference radio sources. The largest estimated mean offset of the vertical component between two solutions for the Australian VLBI site at Hobart was 4 mm. In the worst case (if a weak VLBI network observed a limited number of reference radio sources) the daily offsets of the estimated height component at Hobart exceeded 100 mm. The exclusion of the extended radio sources from the list of reference sources improved the solution statistics and made the geodetic and astrometric time-series more consistent. The problem with the large Hobart height component offset is magnified by a comparatively small number of observations due to the low slewing rate of the VLBI dish (1°/ s). Unless a minimum of 200 scans are performed per 24-h VLBI experiment, the daily vertical positions at Hobart do not achieve 10 mm accuracy. Improving the slew rate at Hobart and/or having an increased number of new sites in the Southern Hemisphere is essential for further improvement of geodetic VLBI results for Southern Hemisphere sites.  相似文献   
134.
The contribution of the International VLBI Service for Geodesy and Astrometry (IVS) to the ITRF2005 (International Terrestrial Reference Frame 2005) has been computed by the IVS Analysis Coordinator’s office at the Geodetic Institute of the University of Bonn, Germany. For this purpose the IVS Analysis Centres (ACs) provided datum-free normal equation matrices in Solution INdependent EXchange (SINEX) format for each 24 h observing session to be combined on a session-by-session basis by a stacking procedure. In this process, common sets of parameters, transformed to identical reference epochs and a prioris, and especially representative relative weights have been taken into account for each session. In order to assess the quality of the combined IVS files, Earth orientation parameters (EOPs) and scaling factors have been derived from the combined normal equation matrices. The agreement of the EOPs of the combined normal equation matrices with those of the individual ACs in terms of weighted root mean square (WRMS) is in the range of 50–60 μas for the two polar motion components and about 3 μs for UT1−UTC. External comparisons with International GNSS Serive (IGS) polar motion components is at the level of 130–170 μas and 21 μs/day for length of day (LOD). The scale of the terrestrial reference frame realized through the IVS SINEX files agrees with ITRF2000 at the level of 0.2 ppb.  相似文献   
135.
Earthquake early warning (EEW) is discriminated from earthquake prediction by using initial seismic waves to predict the severity of ground motion and issue the warning information to potential affected area. The warning information is useful to mitigate the disaster and decrease the losses of life and economy. We reviewed the development history of EEW worldwide and summarized the methodologies using in different systems. Some new sensors came and are coming into EEW giving more developing potential to future implementation. The success of earthquake disaster mitigation relies on the cooperation of the whole society.  相似文献   
136.
马秋斌  刘海英  翟辉 《江苏地质》2011,35(4):386-390
通过WGS-84坐标系、通用横轴墨卡托投影原理和实际应用的介绍,对澳大利亚昆士兰地区地形地质图的数学基础进行初步探讨,掌握利用MapGIS制作外国地形地质图的过程和方法,为拓展地质找矿空间打下基础。  相似文献   
137.
国际大地测量协会(IAG)2003年 7月在日本札晃举行了近 8天的学术讨论会。现将讨论会中关于我国近邻国家大地基准现代化,低轨卫星(LEO)解算地球重力场的新方法---《一步法》,及GPS数据处理方法的新进展等进行扼要介绍。《国际地面参考框架(ITRF)》一直作为全球的大地测量坐标框架,它目前存在的主要问题是它的框架点是一律被假定作常速运动的,但实际情况与ITRF的这一假定是不一致的。在这次大会上我国的近邻国家如日本、蒙古、新西兰、韩国、马来西亚等报告了本国大地坐标系统、坐标框架的更新和现代化,以及地区大地水准面的精化工作。通常利用二步法从低轨卫星的轨道信息求定地球重力场及其时变,大会上报告的一步法是对这一经典方法的重大改进和突破。GPS数据处理方法的新进展中比较突出的有:顾及观测数据短暂性相关影响的GPS连续运行网坐标及其移动速度的解算方案;含有系统误差的GPS观测数据的解算等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号