Increased accuracy in measuring temporal variations in the Earth's gravity field allow inprinciple the use of gravity observations to deduce subsurface water-mass changes. This canbe with respect to a small area, or as a larger spatial average of water mass change usinggravity observations from low-altitude satellites, such as the forthcoming GRACE mission.At both scales, there is a need to validate gravity-based estimates against field recordings ofactual subsurface water-mass variations. In practice, this could prove difficult because thespatial integral of all water-storage change components can be subject to considerable fieldmeasurement error. An alternative approach to the validation process is proposed by whichsuitable geological formations are utilized as giant weighing devices to directly measure area-integratedwater-mass changes. The existence of such natural geological weighing lysimetersis demonstrated using observations from a replicated experimental site in New Zealand. Sitesof this type could be used to verify water-storage change estimates derived from sensitiveground surface gravity instrumentation. In addition, geological lysimeters could be used tomake local checks on the accuracy of any estimated regional water-mass time series, whichis proposed for satellite calibration. The land area weighed by a geological lysimeter increaseswith formation depth and it is speculated that recordings made at oil well depth may allowdirect monitoring of subsurface water mass changes at the regional scale. 相似文献
The proper identification and removal of outliers in the combination of rates of vertical displacements derived from GPS,
tide gauges/satellite altimetry, and GRACE observations is presented. Outlier detection is a necessary pre-screening procedure
in order to ensure reliable estimates of stochastic properties of the observations in the combined least-squares adjustment
(via rescaling of covariance matrices) and to ensure that the final vertical motion model is not corrupted and/or distorted
by erroneous data. Results from this study indicate that typical data snooping methods are inadequate in dealing with these
heterogeneous data sets and their stochastic properties. Using simulated vertical displacement rates, it is demonstrated that
a large variety of outliers (random scattered and adjacent, as well as jointly influential) can be dealt with if an iterative
re-weighting least-squares adjustment is combined with a robust median estimator. Moreover, robust estimators are efficient
in areas weakly constrained by the data, where even high quality observations may appear to be erroneous if their estimates
are largely influenced by outliers. Four combined models for the vertical motion in the region of the Great Lakes are presented.
The computed vertical displacements vary between − 2 mm/year (subsidence) along the southern shores and 3 mm/year (uplift)
along the northern shores. The derived models provide reliable empirical constraints and error bounds for postglacial rebound
models in the region. 相似文献
全球变暖背景下的冰盖消融以及由此带来海平面上升日益明显,直接影响地球表面的陆地水质量平衡,以及固体地球瞬间弹性响应,研究冰盖质量变化的海平面指纹能够帮助深入了解未来海平面区域变化的驱动因素.本文基于海平面变化方程并考虑负荷自吸效应(SAL)与地球极移反馈的影响,借助美国德克萨斯大学空间研究中心(Center for Space Research,CSR)发布的2003年到2012年十年期间的GRACE重力场月模型数据(RL05),结合加权高斯平滑的区域核函数,反演得到格陵兰与南极地区冰盖质量变化的时空分布,并利用海平面变化方程计算得到了相对海平面的空间变化,结果表明:格陵兰与南极冰盖质量整体呈明显的消融趋势,变化速率分别为-273.31 Gt/a及-155.56 Gt/a,由此导致整个北极圈相对海平面降低,最高可达约-0.6 cm·a-1;而南极地区冰盖质量变化趋势分布不一,导致西南极近海相对海平面下降,而东南极地区近海相对海平面上升,最高可达约0.2 cm·a-1.远离质量负荷区域的全球海平面以上升趋势为主,平均全球相对海平面上升0.71 mm·a-1,部分远海地区相对海平面上升更加突出(例如北美与澳大利亚),高出全球平均海平面上升速率将近30%.此外,本文也重点探讨了GRACE监测冰盖消融结果中由于极地近海海平面变化导致的泄漏影响,经此项影响校正后的结果表明:海平面指纹效应对GRACE监测格陵兰与南极地区2003-2012期间整体冰盖消融速率的贡献分别为约3%与9%,建议在后期利用GRACE更精确地估算研究区冰盖质量变化时,应考虑海平面指纹效应的渗透影响.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from
April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation,
GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based
on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement
greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid
height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals.
Electronic Supplementary Material Supplementary material is available in the online version of this article at 相似文献