首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   89篇
  国内免费   12篇
测绘学   107篇
大气科学   3篇
地球物理   121篇
地质学   18篇
海洋学   11篇
天文学   4篇
综合类   82篇
自然地理   16篇
  2024年   1篇
  2023年   3篇
  2022年   15篇
  2021年   21篇
  2020年   15篇
  2019年   22篇
  2018年   15篇
  2017年   14篇
  2016年   13篇
  2015年   22篇
  2014年   26篇
  2013年   25篇
  2012年   19篇
  2011年   16篇
  2010年   15篇
  2009年   30篇
  2008年   21篇
  2007年   21篇
  2006年   23篇
  2005年   11篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1986年   1篇
  1954年   1篇
排序方式: 共有362条查询结果,搜索用时 218 毫秒
131.
利用GRACE卫星重力场模型和地表流动重力观测资料,计算2008年汶川MS 8.0地震发生前6年的重力变化,对卫星和流动重力段差结果与卫星重力反映的重力场动态变化特征进行研究,结果表明:①GRACE卫星重力段差受滤波半径影响显著,与地表流动重力观测结果相比,在重力变化数值上差异较大,在变化率上较为一致;②在汶川地震孕育阶段,川滇地区重力等值线呈“增大—减速增大—减小”的特征,震前2年形成近似垂直于龙门山断裂带的重力变化梯度带。  相似文献   
132.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   
133.
Surface mass changes (SMCs) obtained from time-variable gravity observations of the Gravity Recovery and Climate Experiment (GRACE) satellite mission and precipitation data from the Australian Bureau of Metrology and the Tropical Rainfall Measurement Mission are analysed over the Australian continent to determine whether there is a statistically significant correlation between them. The multiple linear regression analysis and the principal-component analysis techniques are applied in order to reveal the spatial and temporal variability of each data set separately as well as their mutual relationships. The study provides results and their statistical significance for the whole of Australia including the Murray Darling Basin in the southeast. The results suggest a significant decrease in water storage in the southeast of Australia and a dominant annual cycle over the majority of the continent for the four year period considered (January 2003 to December 2006), both in the surface mass and rainfall time series. The study revealed a direct relation between the data sets over most parts of Australia as confirmed by visual comparison and correlation analysis. When compared with precipitation data GRACE-derived SMCs exhibit smoother spatial and temporal variations. The latter is better suited to detect long-term trends in the presence of strong annual signals, which can adversely affect long-term trend estimates. Results regarding the magnitude of the annual signal suggest that only about a fourth of the precipitation's water masses remain sufficiently long in an area to be detected as a gravity change. The respective phases of the annual signals show an average time lag of about 40 days between precipitation and SMCs, suggesting that it takes about one to two months until a temporal gravity observation can detect a precipitation event.  相似文献   
134.
Large earthquakes cause observable changes in the Earth's gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-field gravity effects, this study provides the results from the medium- to far-field gravity changes caused by the 2004 Sumatra-Andaman earthquake that are recorded within GRACE monthly solutions. Utilizing a spherical-earth dislocation model we documented that large-scale signals predominate in the global field of the coseismic gravity changes caused by the earthquake. After removing the near-field effects, the coseismic gravity changes show a negative anomaly feature with an average magnitude of -0.18×10-8 m·s-2 in the region ranging ~40° from the epicenter, which is considered as the "medium field" in this study. From the GRACE data released by Center for Space Research from August 2002 to December 2008, we retrieved the large-scale gravity changes smoothed with 3 000 km Gaussian filter. The results show that the coseismic gravity changes detected by GRACE in the medium field have an average of (-0.20€±0.06)×10-8 m·s-2, which agrees with the model prediction. The detection confirms that GRACE is sensitive to large-scale medium-field coseismic gravitational effects of mega earthquakes, and also validates the spherical-earth dislocation model in the medium field from the perspective of satellite gravimetry.  相似文献   
135.
In this paper, we use the optimum interpolation sea surface temperature (OISST) provided by the National Center for Environmental Prediction (NCEP) to replace the temperature in the top three layers in the ISHII data, and make use of the modified ISHII temperature data to calculate the thermosteric sea level (called modified steric sea level (SSL) hereafter). We subtract the modified SSL and the steric sea level (called ordinary SSL hereafter) derived from the ISHII temperature and salinity from the steric sea level (SSL) provided by the Gravity Recovery and Climate Experiment (GRACE), respectively, and find that the rms error of the difference of the former is obviously smaller than that of the latter. Therefore we reach the conclusion that under the assumption that the GRACE SSL is accurate, the modified SSL can reflect the true steric sea level more accurately. Making use of the modified SSL, we can find that the modified SSL in sea areas of different spatial scales shows an obvious rising trend in the upper 0-700 m layer for the period 1982-2006. The global mean SSL rises with a rate of 0.6 mm year-1 .The modified SSLs in sea areas of different spatial scales all show obvious oscillations with period of one year. There are oscillations with periods of 4-8 years in global oceans and with periods of 2-7 years in the Pacific. The Empirical Orthogonal Function method is applied to the sea areas of different spatial scales and we find that the first modes all have obvious 1-year period oscillations, the first mode of the global ocean has 4-8 year period oscillations, and that of the Pacific has 2-6 year period oscillations. The spatial distribution of the linear rising trend of the global modified SSL in the upper 0-700 m layer is inhomogeneous with intense regional characteristics. The modified SSL linear trend indicates a zonal dipole in the tropical Pacific, rising in the west and descending in the east. In the North Atlantic, the modified SSL indicates a meridional dipole, rising in the latitude band of 20°N-40°N and 45°N-65.5°N and descending obviously in the latitude band of 40°N-45°N.  相似文献   
136.
????GRACE??????????????????300 km???????????????????????????0??5°????????????????????仯???????t????????????????????????????з????????????????????????????仯???????????????????????????????????δ???????t???????????????????????????????????????仯????????????????????????С????????????????????????????У????????????????????仯??????????????????????????????????GRACE???????????????????????????????????????????????????????????GRACE????????????????????????У?????t?????????????????????з?????????????????????????M??w8.8???????????????????????????????????С???M??w8.6?????????????????????????M??w8.6~8.8????п??????????????  相似文献   
137.
自2002年以来,GRACE卫星探测计划可提供高精度的时变地球重力场,用以探测地球系统的物质分布.自1998年中国大陆重力监测网建立以来,利用FG5绝对重力仪和LCR-G型相对重力仪每2年对该网进行重复测量获取重力场时变信息.基于此,本文利用GRACE和地面重力测量获得了中国大陆重力场的长期年变率,利用位错理论根据USGS发布的断层模型计算了2008年汶川Ms8.0级地震的同震重力变化并进行了300 km高斯滤波.GRACE卫星重力和地面重力结果均表明华北地区地下水流失严重,在绝对重力基准站上,GRACE卫星重力与绝对重力变化率较为一致,汶川区域的地面重力变化结果可视为大地震前兆信息.  相似文献   
138.
Interpretation of the GRACE-derived mass trend in Enderby Land, Antarctica   总被引:2,自引:1,他引:1  
Monthly gravity solutions of the Gravity Recovery and Climate Experiment (GRACE) reveal three areas in Antarctica with striking interannual mass trends. The positive mass trend in Enderby Land, East Antarctica, is poorly understood because of uncertainties in the surface ice-sheet mass balance, post-glacial rebound (PGR), and processing of GRACE data. In this study, we compare the GRACE mass trends with values estimated from in situ snow-stake measurements, and Ice Cloud and land Elevation Satellite (ICESat) data. The mass trends estimated from ICESat data show a strong correlation with GRACE mass trends. In contrast, the snow-stake data show discrepancies with temporal variations in GRACE mass, especially in 2006. The discrepancies are probably associated with basal ice-sheet outflow, which is difficult to observe using snow stakes. We conclude that the bulk of the GRACE mass trend can be explained by snow accumulation and basal ice-sheet outflow.  相似文献   
139.
利用GRACE卫星数据研究汶川地震前后重力场的变化   总被引:2,自引:0,他引:2  
介绍了利用GRACE卫星数据计算和分析重力场变化的方法.以EIGEN-GRACE02S重力场模型为背景,对高斯平滑处理前后中国大陆月重力场的变化作了比较,认为取平均半径为666 km作高斯平滑,能够得到合理的重力变化结果.以3个月时间尺度计算了2008年汶川地震前后中国大陆的重力场变化,将结果与2006年和2007年相同时间尺度的变化结果进行比较,发现三者相符合,并且同震重力的负变化可用地壳膨胀模型理论来解释.  相似文献   
140.
The satellite missions CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) provide accurate data that are routinely inverted into spherical harmonic coefficients of the geopotential forming a global geopotential model (GGM). Mean square errors of these coefficients, in some cases even entire covariance matrices, are included in the GGM. Due to estimation procedures with a large redundancy and insufficiently propagated observation errors, they often do not represent the actual accuracy of the harmonic coefficients, thus also gravity field parameters synthesized from the respective GGM. Since in most cases standard methods validating the GGMs reached their limits, new procedures and independent data are being currently sought. This article discusses an alternative validation procedure based on comparison of the GGMs with independent data represented by a set of GPS/leveling stations. Due to a different spectral content of the height anomalies synthesized from the GGMs and of those derived by combination of GPS-based ellipsoidal and leveled normal heights, the GGM-based low frequency height anomaly is enhanced for a high frequency component computed from local ground gravity and elevation data. The methodology is applied on a set of selected points of the European Vertical Reference Network and Czech trigonometric stations. In accordance with similar tests based on entirely independent data of cross-over altimetry, obtained results seem to indicate low-frequency deficiencies in the current GGMs, namely in those estimated from data of single-satellite missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号