排序方式: 共有28条查询结果,搜索用时 15 毫秒
21.
基于神经网络的话务量预测 总被引:2,自引:0,他引:2
话务量具有高度的非线性和时变特性,由于神经网络具有较强的非线性映射等特性,将其运用于非线性的话务量短期预测是非常合适的。以青白江2005年10月的话务量作为预测对象,提出基于BP神经网络和基于Elman神经网络的话务量预测模型,仿真实验表明两种模型对于话务量的短期预测均是可行有效的。经过比较,Elman神经网络训练速度比BP神经网络快很多,更适用于实际应用。 相似文献
22.
Forests play a critical role in sustaining the human environment. Most forest fires not only destroy the natural environment and ecological balance, but also seriously threaten the security of life and property. The early discovery and forecasting of forest fires are both urgent and necessary for forest fire control. This article explores the possible applications of Spatio‐temporal Data Mining for forest fire prevention. The research pays special attention to the spatio‐temporal forecasting of forest fire areas based upon historic observations. An integrated spatio‐temporal forecasting framework – ISTFF – is proposed: it uses a dynamic recurrent neural network for spatial forecasting. The principle and algorithm of ISTFF are presented, and are then illustrated by a case study of forest fire area prediction in Canada. Comparative analysis of ISTFF with other methods shows its high accuracy in short‐term prediction. The effect of spatial correlations on the prediction accuracy of spatial forecasting is also explored. 相似文献
23.
24.
25.
详细介绍了Elman神经网络的基本结构和数学模型,同时以地下水动态预测为例,给出用Elman神经网络建立地下水动态预测模型的方法。模型检验结果表明,该模型拟合和预测精度均较高,可应用于地下水动态系统的建模,借此说明Elman网络在地下水动态预报中的可行性,并为Elman网络技术在水文水资源领域的动态模拟应用提供借鉴。 相似文献
26.
针对电离层TEC非线性、非平稳的特点,建立一种基于Prophet与Elman神经网络相结合的残差改正电离层短期预报模型.利用该模型对IGS提供的不同太阳活动程度期间的电离层TEC时间序列进行建模预报.结果显示,改正模型能够反映电离层TEC的变化特征,在太阳活动低年和太阳活动高年预报的平均相对精度分别为92.9%和92.... 相似文献
27.
贝叶斯正则化的Elman神经网络电离层TEC预报模型 总被引:1,自引:0,他引:1
利用2017年中低纬电离层总电子含量、地磁活动指数、年积日等参数,首次建立基于贝叶斯正则化(Bayesian regularization)的Elman回归神经网络(BR-Elman)的电离层TEC预报模型。同时,根据地磁活动指数的变化特征,分别进行平静电离层和扰动电离层预报建模。实验结果表明,该方法在平静期5 d预测值的均方根误差为1.19 TECu,残差为1.03 TECu,相关系数为0.93;在扰动期5 d预测值均方根误差为1.34 TECu,残差为1.01 TECu,相关系数为0.91。贝叶斯正则化的BP神经网络模型以及传统BP神经网络模型在平静期与扰动期5 d的预测上,均方根误差最小为1.87 TECu,残差最小为1.50 TECu,相关系数最优为0.87。通过对比分析,该模型较其他2个模型的预报效果有明显改善。 相似文献
28.
致密砂岩气层压裂产能及等级预测方法 总被引:1,自引:0,他引:1
致密砂岩储层孔隙度小、渗透率低、含气饱和度低,基本上没有自然产能,需要进行压裂,因此进行压裂产能的预测很有必要。笔者研究了鄂尔多斯盆地苏里格东部地区盒8段致密砂岩气层的压裂产能及等级预测。利用反映储层流动性质的测井参数(电阻率、自然伽马、声波时差、中子、密度)与反应压裂施工情况的压裂施工参数(单位厚度砂体积、砂比、砂质量浓度、单位厚度排量、单位厚度入井总液量),选择数学统计方法神经网络法进行致密砂岩气层压裂产能等级预测。分析比较Elman神经网络、支持向量回归(SVR)、广义回归神经网络(GRNN)3个神经网络预测致密砂岩气层压裂产能模型的网络结构参数、回判及预测精度以及运行耗费时间。结果表明:3个模型中,GRNN网络参数只有1个,回判和预测精度最高,运行时间小于1 s。因此,选择GRNN模型预测致密砂岩气层压裂产能,并用于苏里格东部地区致密砂岩气层压裂产能的等级预测。等级预测准确率达到90%。 相似文献