全文获取类型
收费全文 | 56篇 |
免费 | 4篇 |
国内免费 | 12篇 |
专业分类
测绘学 | 2篇 |
大气科学 | 17篇 |
地球物理 | 8篇 |
地质学 | 3篇 |
海洋学 | 34篇 |
综合类 | 3篇 |
自然地理 | 5篇 |
出版年
2021年 | 2篇 |
2018年 | 2篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 2篇 |
2011年 | 6篇 |
2010年 | 2篇 |
2009年 | 5篇 |
2008年 | 2篇 |
2007年 | 10篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 2篇 |
2003年 | 1篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有72条查询结果,搜索用时 15 毫秒
11.
Phaeocystis globosa Scherffel, a harmful microalga, and its production of dimethylsulfoniopropionate
The production of dimethylsulfoniopropionate (DMSP) and its cleavage products (DMS) are well studied in phytoplankton worldwide. However, less is known about their sources, distributions, and impacts in the coast of China. We examined the production of DMSP and DMS in Phaeocystis globosa Scherffel and other benthic macroalgae from the South China coast in relation to environmental conditions. P. globosa was a harmful marine microalgal species and its bloom took place in the eutrophic waters along the South China Sea frequently. It also produced high content of DMSP at different growth stages, with the highest concentration usually observed in the stationary period. Moreover, the production of DMSP in P. globosa was significantly affected by salinity and temperature with the highest contents associated with high salinity (e.g. 40) and low temperature (e.g. 20°C). In field benthic macroalgae, there was also a marked difference in the DMSP of various species or different samples of the same species. Chlorophyll a contents were also determined for each macroalgal species. The highest chlorophyll a (238.7 ng/g fresh weight) was recorded in Chlorophyta Ulva lactuca at Guishan Island (Zhuhai), while the lowest value (1.5 ng/g fresh weight) was found in Rhodophyta Gracilaria tenuistipitata in Zhanjiang. Further correlation analysis indicated that there was no significant relationship between the content of DMSP and chl-a in macroalgae samples (P > 0.05). All the results suggested that the production of DMSP in marine algae was not only species- and stage-related, but also greatly affected by various environmental factors. 相似文献
12.
Kazushi Aranami Shuichi Watanabe Shizuo Tsunogai Masato Hayashi Ken Furuya Toshi Nagata 《Journal of Oceanography》2001,57(3):315-322
Dimethylsulfide (DMS), chlorophyll a (Chl-a), accessory pigments (fucoxanthin, peridinin and 19-hexanoyloxyfucoxanthin), and bacterial production (BP) were measured in the surface layer (0–100 m) of the subarctic North Pacific, including the Bering Sea, during summer (14 July–5 September, 1997). In surface sewater, the concentrations of DMS and Chl-a varied widely from 1.3 to 13.2 nM (5.1 ± 3.0 nM, mean ± S.D., n = 48) and from 0.1 to 2.4 µg L–1 (0.6 ± 0.6 µg L–1, n = 24), respectively. In the subarctic North Pacific, DMS to Chl-a ratios (DMS/Chl-a) were higher on the eastern side than the western side (p < 0.0001). Below the euphotic zone, DMS/Chl-a ratios were law and the correlation between DMS and Chl-a was relatively strong (r
2 = 0.700, n = 27, p < 0.0001). In the euphotic zone, DMS/Chl-a ratios were higher and the correlation between DMS and Chl-a was weak (r
2 = 0.128, n = 50, p = 0.01). The wide variation in DMS/Chl-a ratios would be at least partially explained by the geographic variation in the taxonomic composition of phytoplankton, because of the negative correlation between DMS/Chl-a and fucoxanthin-to-Chl-a ratios (Fuc/Chl-a) (r
2 = 0.476, n = 26, p = 0.0001). Furthermore, there was a positive correlation between DMS and BP (r
2 = 0.380, n = 19, p = 0.005). This suggests that BP did not represent DMS and dimethylsulfoniopropionate (DMSP) removal by bacterial consumption but rather DMSP degradation to DMS by bacterial enzyme. 相似文献
13.
Veli-Matti Kerminen Risto E. Hillamo Anthony S. Wexler 《Journal of Atmospheric Chemistry》1998,30(3):345-370
A box model was constructed to investigate connections between the particulate MSA to non-sea-salt sulfate ratio, R, and DMS chemistry in a clean marine boundary layer. The simulations demonstrated that R varies widely with particle size, which must be taken into account when interpreting field measurements or comparing them with each other. In addition to DMS gas-phase chemistry, R in the submicron size range was shown to be sensitive to the factors dictating sulfate production via cloud processing, to the removal of SO2 from the boundary layer by dry deposition and sea-salt oxidation, to the entrainment of SO2 from the free troposphere, to the relative concentration of sub- and supermicron particles, and to meteorology. Three potential explanations for the increase of R toward high-latitudes during the summer were found: larger MSA yields from DMS oxidation at high latitudes, larger DMSO yields from DMS oxidation followed by the conversion of DMSO to MSA at high latitudes, or lower ambient H2O2 concentrations at high latitudes leading to less efficient sulfate production in clouds. Possible reasons for the large seasonal amplitude of R at mid and high latitudes include seasonal changes in the partitioning of DMS oxidation to the OH and NO3 initiated pathways, seasonal changes in the concentration of species participating the DMS-OH reaction pathway, or the existence of a SO2 source other than DMS oxidation in the marine boundary layer. Even small anthropogenic perturbations were shown to have a potential to alter the MSA to non-sea-salt sulfate ratio. 相似文献
14.
于2010年7~11月对胶州湾夏、秋季浮游动物种类和丰度进行现场调查,并分析讨论了胶州湾夏、秋季浮游动物丰度的水平分布与环境因子(温度、盐度、水深、叶绿素a)和二甲基硫(DMS)、溶解态β-二甲基巯基丙酸内盐(DMSPd)、颗粒态β-二甲基巯基丙酸内盐(DMSPp)的相关性。结果表明,胶州湾浮游动物丰度分布不均匀,8月湾内西部沿岸海域C1站位出现调查期间的动物丰度最大值(656.1ind/m3),最小值(1.492ind/m3)出现在10月胶州湾东北部的A2站位。浮游动物丰度具有明显的季节变化,秋季浮游动物丰度低于夏季浮游动物丰度。浮游动物丰度与盐度、叶绿素a含量、细菌生物量的相关性不明显,2010年10月浮游动物丰度与DMS呈显著正相关(P0.05),11月的浮游动物丰度与DMSPp呈显著正相关(P0.05),其它月份(7、8、9月)的浮游动物丰度与DMS、DMSPd、DMSPp浓度的相关性均不明显。由于浮游动物摄食活动对DMS释放的影响受多种因素的制约,因此浮游动物与DMS的相互作用需要进一步研究。 相似文献
15.
海水温度对衰亡期浒苔释放生源硫影响的模拟研究 总被引:1,自引:0,他引:1
为研究浒苔释放生源硫的特征,本文对采集于黄海绿潮中期和末期的浒苔进行了实验室模拟培养,探讨了不同温度对衰亡期浒苔释放生源硫化物的影响。实验结果表明,在10~25℃温度范围内,温度升高能够加速浒苔的衰亡。二甲基硫(DMS)的平均释放速率范围为2.79~150.70 nmol/(L·g·d),二甲基硫基丙酸内盐(DMSP)的平均释放速率范围为2.16~113.26 nmol/(L·g·d)。温度升高能够使DMS和DMSP的释放速率加快,释放量增加,DMS最大平均释放速率在25℃条件下比10℃条件下升高了约60%,培养液中DMS浓度升高了2~3倍。采集于绿潮末期的浒苔培养液中的DMS和DMSP和采集于绿潮中期的浒苔相比,浓度有所增加,采集于浒苔绿潮末期浒苔培养液中DMS的最高平均浓度为418.41 nmol/L,约为中期的4倍;DMSP的最高平均浓度为316.14 nmol/L,是中期的3倍。浒苔绿潮的爆发会对水体中的硫体系循环产生影响,进而影响该海域生态环境。 相似文献
16.
海洋中DMSP的研究进展 总被引:6,自引:2,他引:6
DMSP(dimethylsulfoniopropionate,β-二甲基巯基丙酸内盐)作为DMS(dimethylsulfide,二甲基硫)的前体,是1种重要的生源硫化物。根据其在海洋生态系统和生物地球化学循环中所起着的重要作用,作者综述了国内外海洋科学工作者十几年来在EMSP研究方面的进展。 相似文献
17.
Fleur C. van Duyl Winfried W. C. Gieskes Arjen J. Kop Wilma E. Lewis 《Journal of Sea Research》1998,40(3-4)
In the spring of 1995, short-term variations in the concentration of particulate and dissolved dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) were monitored in the western Wadden Sea, a shallow coastal region in open connection with the North Sea. Significant correlations were found between abundance of Phaeocystis globosa and particulate DMSP; concentrations increased rapidly from 100 to 1650 nM in the middle of April. Highest DMS concentrations were found during the initial phase of the exponential growth of the bloom. DMS production and loss rates of DMSP and DMS were estimated experimentally during various phases of the bloom. DMS production and consumption were roughly in balance, with production only slightly exceeding consumption at the start of the bloom. Rates of production and consumption were highest during the exponential growth phase of Phaeocystis and declined in the course of the bloom (from 300–375 to less than 5 nmol dm−3 d−1). Demethylation of DMSP increased during the bloom (from 11 to 1300 nmol dm−3 d−1); it accounted for up to 100% of the DMSP loss at the end of the bloom. The shift from DMSP cleavage to demethylation in the course of a Phaeocystis bloom implies that DMS concentrations are not necessarily highest at the peak or towards the end of blooms. 相似文献
18.
Mireille Lefvre Alain Vzina Maurice Levasseur John W. H. Dacey 《Deep Sea Research Part I: Oceanographic Research Papers》2002,49(12)
Dimethylsulfide (DMS) is a volatile sulfur compound produced by the marine biota. The flux of DMS to the atmosphere may act on climate via aerosol formation. It is therefore important to improve our understanding of the processes that regulate sea surface DMS concentrations for eventual inclusion into climate models. In order to simulate the dynamics of DMS concentrations in the mixed layer, a model of DMS production was developed and calibrated against a 1 year time-series of DMS and DMSP (dissolved and particulate) data collected in the Sargasso Sea at Hydrostation ‘S’. The model reproduces the observed divergence between the seasonal cycles of particulate DMSP, the DMS precursor produced by algae, and DMS produced through the microbial loop from the cleavage of dissolved DMSP. DMSPp (particulate) reaches its maximum in the spring whereas DMSPd (dissolved) and DMS reach maximum concentrations in summer. Several parameters had to vary seasonally and with depth in order to reproduce the data, pointing out the importance of physiological and structural changes in the plankton food web. These parameters include the intracellular S(DMSp):N ratio, the C:Chl ratio and the sinking rates of phytoplankton and detritus. For the Sargasso Sea, variations in the solar zenithal angle, which co-vary with the seasonal variations in the depth of the mixed layer, proved to be a convenient signal to drive the seasonal variation in the structure and dynamics of the plankton. Variations of the temperature and photosynthetically active radiation also help to reproduce the short-term variability of the annual S cycle. Results from a sensitivity analysis show that variations in DMSPp are dependent mostly on parameters controlling phytoplankton biomass, whereas DMS is dependent mostly on variables controlling phytoplankton productivity. 相似文献
19.
紫外辐射对南极棕囊藻细胞DMSP合成和DMS释放率的影响 总被引:7,自引:0,他引:7
在不同紫外辐射波段下,南极棕囊藻(Phaeocystis antarctica)细胞的生长率、叶绿素a、细胞内DMSP含量和DMS释放量变化的测定结果表明;UV-B对南极棕囊藻细胞生长率和叶绿素a含量有抑制效应,UV-B还可加快DMSP分解成DMS和丙烯酸的分解速率,而UV-A对该藻细胞的DMSP合成有强烈的抑制效应。鉴于在每年春季极地海洋浮游植物繁殖期间,南极棕囊藻在南极海冰带海洋浮游植物种群结构中占有的优势地位,以及该藻是极地海洋浮游植物中DMS的主要释放者,推测南极“臭氧空洞”所增加的紫外辐射可能会对南极海域的DMS释放率产生一定的影响。 相似文献
20.
LARS G. FRANZÉN ROGER A. CROPP 《Geografiska Annaler: Series A, Physical Geography》2007,89(4):301-330
Carbon sequestering in peatlands is believed to be a major climate‐regulating mechanism throughout the late Phanerozoic. Since plant life first evolved on land, peatlands have been significant carbon sinks, which could explain significant parts of the large variations in atmospheric carbon dioxide observed in various records. The result is peat in different degrees of metamorphosis, i.e. lignite, hard coal and graphite. During phases of extensive glaciations such as the 330–240 Ma Pangea Ice Age, atmospheric carbon dioxide was critically low. This pattern repeats itself during the Pleistocene when carbon dioxide oscillates with an amplitude of c. 200–300 ppmv. This paper suggests that the ice age cycles during the Pleistocene are generated by the interglacial growth of peatlands and the subsequent sequestering of carbon into this terrestrial pool. The final initiation of ice age pulses towards the end of inter‐glacials, on the other hand, is attributed to the cyclic influx of cosmic dust to the Earth surface, which in turn regulates cloud formation and the incoming shortwave radiation. These shorter cycles have a frequency of c. 1000‐1250 years and might be connected to sunspot or other low frequency solar variations. In a wider context the ice age cycling could be regarded as an interplay between terrestrial life on the high latitudes of the northern hemisphere and the marine subsurface life in the southeast. If the results presented here are correct, the present global warming might just be the early part of a new warm period such as the Bronze Age and the Roman and Medieval Warm periods. This could be caused by entry into another phase of decreasing influx rates of cosmic dust. The increasing concentrations of atmospheric carbon dioxide might have contributed to this warming but, most important of all, it might temporarily have saved us from a new ice age pulse. 相似文献