首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   59篇
  国内免费   21篇
测绘学   98篇
大气科学   32篇
地球物理   82篇
地质学   47篇
海洋学   9篇
综合类   10篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   11篇
  2019年   10篇
  2018年   12篇
  2017年   12篇
  2016年   12篇
  2015年   11篇
  2014年   24篇
  2013年   20篇
  2012年   11篇
  2011年   21篇
  2010年   9篇
  2009年   3篇
  2008年   8篇
  2007年   14篇
  2006年   7篇
  2005年   5篇
  2004年   12篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   9篇
  1998年   12篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1987年   1篇
  1978年   1篇
  1954年   2篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
161.
The accuracy of vertical position information can be degraded by various sources of error in digital aerial photogrammetry (DAP) based point clouds. To address this issue, we propose a relatively straightforward method for automated correction of such point clouds. This method can be used in conjunction with any 3D reconstruction method in which a point cloud is generated from a pair of aerial images. The crux of the method involves separately co-registering each DAP point cloud (formed by the overlap of two or more images) to a common airborne laser scanning (ALS) based digital terrain model. The proposed method has the following essential steps: (1) Ground surface patches are identified in the normalized DAP point clouds by selecting areas in which standard deviation of vertical height is low, (2) height differences between the DAP and ALS point clouds are calculated at these patches, and (3) a correction surface is interpolated from these height differences and is then used to rectify the entire DAP point cloud. The performance of the proposed method is verified using plot data (n = 250) from a forested study area in Eastern Finland. We observed that DAP data from the area corrected using our proposed method resulted in significant increases in prediction accuracy of key forest variables. Specifically, the root mean squared error (RMSE) values for dominant height predictions decreased by up to 23.2%, while the associated model R2 values increased by 16.9%. As for stem volume, RMSEs dropped by 20.6%, while the model R2 improved by 14.6%, respectively. Hence, prediction accuracies were almost as good as with ALS data. The results suggest that vertically misaligned DAP data, if rectified using an algorithm such as the one presented here, could deliver near ALS data quality at a fraction of the cost.  相似文献   
162.
Traditional field-based forest inventories tend to be expensive, time-consuming, and cover only a limited area of a forested region. Remote sensing (RS), especially airborne laser scanning (ALS) has opened new possibilities for operational forest inventories, particularly at the single-tree level, and in the prediction of single-tree characteristics. Throughout the world, forests have varying characteristics that necessitate the development of modern, effective, and versatile tools for ALS data processing. To address this need, we aimed to develop a tool for individual tree detection (ITD) utilising a self-calibrating algorithm procedure and to verify its accuracy using the complicated forest structure of near natural forests in the temperate zone.This study was carried out in the Polish part of the Białowieża Forest (BF). The airborne laser scanner (ALS) and color-infrared (CIR) datasets were acquired for more than 60 000 ha. Field-based measurements were performed to provide reference data at the single tree level. We introduced a novel ITD method that is self-calibrated and uses a hierarchical analyses of the canopy height model.There were more than 20 000 000 of trees in first layer in BF above 7 m height. Trees visible from above were divided into coniferous, deciduous and mixed trees that were then matched with an accuracy of 85 %, 85 % and 75 %, respectively. Compared to existing methods, the proposed method is more flexible and achieves better results, especially for deciduous species. Before application of the presented method to other regions, the calibration based on the developed optimisation procedure is needed.  相似文献   
163.
This case study introduces measurements of turbulent fluxes in a nocturnal boundary layer in North Germany with the new helicopter-borne turbulence measurement system HELIPOD, a detailed data analysis and examination in regard of systematic errors of the instrument, and some comparison with local similarity theory and experiments of the past, in order to confirm the occurrence of small vertical turbulent fluxes. The examined nocturnal boundary layer offered excellent conditions to analyse the quality of the measurement system. In this connection, a detailed look at a strong ground-based inversion disclosed small turbulent fluxes with a spectral maximum at ten metres wavelength or less, embedded in intermittent turbulence. For verification of these fluxes, the measurements were compared with well established results from past experiments. Local similarity theory was applied to calculate dimensionless variances of the turbulent quantities, which were found in good agreement with other observations. Since shear and stratification varied significantly on the horizontal flight legs due to global intermittency, a method was developed to determine vertical gradients on a horizontal flight pattern, by use of small fluctuations of the measurement height. With these locally determined gradients, gradient transport theory became applicable and the turbulent diffusivities for heat and momentum, the Richardson number, and the flux Richardson number were estimated within isolated strong turbulent outbursts. Within these outbursts the flux Richardson number was found between 0.1 and 0.2. The functional relationship between the gradient Richardson number and the turbulent Prandtl number agreed well with observations in past experiments and large eddy simulation. The impact of the stratification on the vertical turbulent exchange, as already described for the surface layer using Monin–Obukhov similarity, was analogously observed in the very stably stratified bulk flow when local scaling was applied.  相似文献   
164.
利用空中平均重力异常确定区域大地水准面   总被引:3,自引:0,他引:3  
提出了直接利用空中平均重力异常计算区域大地水准面的方法。模拟计算的结果表明, 该方法与传统的利用地面平均空间重力异常确定的大地水准面精度相当, 但其显著优点是勿需空中重力异常的向下解析延拓, 从而可以避免延拓误差对大地水准面精化的影响。  相似文献   
165.
FIR低通差分器的设计及其在航空重力测量中的应用   总被引:15,自引:4,他引:11  
根据契比雪夫逼近理论 ,设计了适用于航空重力测量应用的有限冲激响应 (FIR)低通差分器 ,利用模拟模型对滤波器的性能进行了验证 .基于静态GPS试验数据和某地区机载动态GPS摄影定位的实测数据 ,应用FIR低通差分器计算了载体的垂直加速度 ,计算结果表明 ,当滤波时间间隔为 1 0 0s时 ,垂直加速度的确定精度可达± 1— 2mGal.  相似文献   
166.
Earth resistivity estimates from frequency domain airborne electromagnetic data can vary over more than two orders of magnitude depending on the half-space estimation method used. Lookup tables are fast methods for estimating half-space resistivities, and can be based on in-phase and quadrature measurements for a specified frequency, or on quadrature and sensor height. Inverse methods are slower, but allow sensor height to be incorporated more directly. Extreme topographic relief can affect estimates from each of the methods, particularly if the portion of the line over the topographic feature is not at a constant height above ground level. Quadrature–sensor height lookup table estimates are generally too low over narrow valleys. The other methods are also affected, but behave less predictably. Over very good conductors, quadrature–sensor height tables can yield resistivity estimates that are too high. In-phase–quadrature tables and inverse methods yield resistivity estimates that are too high when the earth has high magnetic susceptibility, whereas quadrature–sensor height methods are unaffected. However, it is possible to incorporate magnetic susceptibility into the in-phase–quadrature lookup table. In-phase–quadrature lookup tables can give different results according to whether the tables are ordered according to the in-phase component or the quadrature component. The rules for handling negative in-phase measurements are particularly critical. Although resistivity maps produced from the different methods tend to be similar, details can vary considerably, calling into question the ability to make detailed interpretations based on half-space models.  相似文献   
167.
In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery.Thermal images were first subdivided into smaller 200 × 200 pixel “tiles.” We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each tile. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs.The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared surveys of other wildlife species.  相似文献   
168.
胶莱盆地第四系分布广泛 ,其构造单元可利用重磁资料进行划分。本文对鲁东地区各岩层的磁性及密度资料进行了汇总 ,按物性特征将其划分为 5种类型。根据胶莱盆地重磁场形态、走向、幅值等特征 ,可将其划分为 6个分区 ,其中七级镇重高磁高低相间区为该盆地的特殊地段。胶莱盆地共划分 1 4个次级构造单元 ,它们的形成与发展受七级镇断裂带的控制。  相似文献   
169.
航空电磁法由于高效和高精度的特点广泛应用于地质填图、矿产资源、地下水、及环境与工程等勘查.然而,航空电磁系统处于动态环境,噪声影响严重,航空电磁数据处理至关重要.航空电磁数据噪声除随机成分外,还包括有各种效应引起的畸变,数据去噪需要依据噪声特征进行处理.航空电磁数据调平是航空电磁数据处理中至关重要的步骤,它能有效去除数据中由飞机飞行条件变化导致系统状态变化而产生的异常.传统的调平方法由于效率较低、易产生数据畸变等受到限制.为了克服这些局限性,我们提出一种基于曲波变换的数据调平方法.该方法得益于曲波变换多尺度和多方向性特征,可以有效地提取数据中的调平误差并予以去除.与此同时,利用该方法我们可以对非规则测区数据进行直接调平,无需进行测区分割,显著提高调平效率和普适性.为了检验本文曲波变换调平方法的有效性,我们将其应用于理论数据以及在爱尔兰Waterford地区实测的航电数据调平.实验结果表明该方法有效地去除调平误差的同时很好地保留有用信号.  相似文献   
170.
时间域航空电磁系统瞬变全时响应正演模拟   总被引:16,自引:10,他引:6       下载免费PDF全文
殷长春  黄威  贲放 《地球物理学报》2013,56(9):3153-3162
近年来很多专家学者致力于时间域航空系统正反演的研究.本文针对一维均匀层状介质和三维模型进行正演.不仅计算垂直方向上的电磁响应,还计算了同线方向上的电磁响应,为航空电磁多分量观测提供理论依据.通过比较航空电磁系统的脉冲响应和阶跃响应特征,发现脉冲响应在早期时间存在奇异性,造成计算不稳定.然而,阶跃响应在早期时间没有奇异性,因而利用系统的阶跃响应可得到一种计算时间域航空电磁系统全时响应的稳定算法.该算法具有较高的精度,并很好地保持了磁场强度B和磁感应dB/dt关系的一致性.该算法推广到三维地质体的时间域正演模拟亦取得很好的效果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号