首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   50篇
  国内免费   61篇
测绘学   17篇
大气科学   6篇
地球物理   105篇
地质学   161篇
海洋学   77篇
天文学   24篇
综合类   24篇
自然地理   60篇
  2022年   5篇
  2021年   16篇
  2020年   16篇
  2019年   14篇
  2018年   7篇
  2017年   14篇
  2016年   15篇
  2015年   16篇
  2014年   15篇
  2013年   17篇
  2012年   20篇
  2011年   20篇
  2010年   16篇
  2009年   15篇
  2008年   23篇
  2007年   29篇
  2006年   38篇
  2005年   17篇
  2004年   21篇
  2003年   13篇
  2002年   20篇
  2001年   16篇
  2000年   18篇
  1999年   13篇
  1998年   11篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   7篇
  1980年   2篇
排序方式: 共有474条查询结果,搜索用时 31 毫秒
101.
 The purpose of this study is to investigate the rates and mechanisms of recharge and evaporation in soils of a desert environment using two environmental tracers (chloride and oxygen-18). The profiles of chloride concentration and oxygen-18 enrichment in soil-water, together with the depth distribution of water content in soil, reveal information about long-term recharge and instantaneous evaporation processes without needing to know the physical properties of the soil. Three holes were hand-augured, in different desert settings in southeastern New Mexico. The chloride concentration profiles were used, with the chloride mass balance method, to estimate long-term recharge rates in these three holes as 0.5, 0.8, and 2.4 mm yr–1. Analysis using a bimodal flow and transport model shows that possibly 85% of the recharge occurs via movement of water through preferred pathways in the root zone. Preferential flow was evident in all three sampling sites. Clay layers have a noticeable effect on the development of water content distribution and thus on oxygen-18 enrichment and chloride concentration profiles. The spatial variation in clay layering partly explains the variation in recharge rate estimates. Received: 13 October 1995 · Accepted: 15 November 1995  相似文献   
102.
103.
全新世早期是太阳辐射加强、全球温度上升,并伴随着冰盖消融的重要时期,而其间发生的冷事件以及亚洲季风区的弱夏季风事件的成因一直是全新世早期研究的重点。对亚洲季风-海洋-极地联系研究有着重要的意义。通过分析湖南莲花洞LHD5石笋28个U/Th年龄和535个氧同位素数据重建了全新世亚洲季风演化特征,其中全新世早期分辨率达8年。LHD5石笋记录到YD结束时间为11748±30 a B.P.,全新世开始于11684±39 a B.P.,转换时间约为64年,与格陵兰gicc05记录在误差范围内一致。LHD5石笋记录到全新世早期6次弱夏季风事件,事件年龄中心点分别为11461±34 a B.P.、10354±36 a B.P.、9957±25 a B.P.、9062±36 a B.P.、8744±23 a B.P.、8144±24 a B.P.,其δ18O值的波动幅度分别为1.08‰、0.94‰、0.66‰、0.90‰、0.55‰、1.02‰,这些弱季风事件在亚洲季风区具有普遍的区域意义。除8.2 ka事件之外,10 ka B.P.之前的弱季风事件除了受到太阳活动的影响,还受到北大西洋IRD事件的影响,而之后更多地受到太阳活动和ITCZ南移的影响。  相似文献   
104.
3个海域沙筛贝遗传差异的DNA分子标记研究   总被引:1,自引:0,他引:1  
本文运用RAPD(random amplified polymorphic DNA)技术,对3个海域的沙筛贝进行了地理遗传差异分析.结果表明福建东山湾与厦门马銮湾沙筛贝的遗传距离为0.2764,深圳湾与马銮湾沙筛贝的为0.3067,深圳湾与东山湾沙筛贝的为0.3305.这说明马銮湾与东山湾的沙筛贝种群遗传距离较近,而东山湾与深圳湾的沙筛贝种群遗传距离较大.对厦门马銮湾沙筛贝的18S rDNA进行了测序,在基因库上查得同科另外3个种的18S rDNA序列,构建了分子系统发育树,发现沙筛贝与Mytilopsis leucophaeata同源性比较高.  相似文献   
105.
南沙群岛微型与超微型真核藻类遗传多样性的初步研究   总被引:3,自引:0,他引:3  
用分子生物学方法建立了南沙海域5号采样点附近海域的微型、超微型真核藻类18S rDNA库,采用RFLP和基因测序的手段对其遗传多样性进行了初步探讨。研究表明南沙海域的微型、超微型藻类的遗传多样性十分丰富,而且尚有大量未获培养的、分类位置未知的物种有待研究。  相似文献   
106.
本研究自胶州湾分离了两种底栖硅藻,形态学初步鉴定为长菱形藻和新月细柱藻。对其18S rDNA和rbcL基因进行了测序并用邻接法构建了系统树。结果表明,两藻在18S rD-NA和rbcL基因序列上均存在较大的差异,基于DNA序列的分类结果与形态学分类结果一致。在依据形态指标难以确定藻类分类地位的情况下,18S rDNA和rbcL基因序列是有用的鉴定工具。  相似文献   
107.
Nitrate transport in the unsaturated zone of a riverbank filtration (RBF) system in Karany, Czech Republic, was studied. Previous study of the system estimated RBF recharge as 60% riverbank filtrate and 40% local groundwater contaminated by nitrates. Nitrate concentrations observed in RBF recently cannot be explained by simple groundwater contamination and a new conception of groundwater recharge is suggested. A two‐component model based on water 18O data modelled recharge of local groundwater. One component of groundwater recharge is rainfall and irrigation water moving through the unsaturated zone of the Quaternary sediments in piston flow. The second component is groundwater from the Cretaceous deposits with a free water table. Both the components of groundwater recharge have different nitrate concentrations, and resulting contamination of groundwater depends on the participation of water from Quaternary and Cretaceous deposits. Nitrates' origins and their mixing in the subsurface were traced by 15N data. Nitrate transport from the unsaturated zone is important and time variable source of groundwater contamination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
108.
The stable isotopic (2H/1H and 18O/16O) composition of precipitation has been used for a variety of hydrological and paleoclimate studies, a starting point for which is the behaviour of stable isotopes in modern precipitation. To this end, daily precipitation samples were collected over a 7‐year period (2008–2014) at a semi‐arid site located at the Macquarie Marshes, New South Wales (Australia). The samples were analysed for stable isotope composition, and factors affecting the isotopic variability were investigated. The best correlation between δ 18O of precipitation was with local surface relative humidity. The reduced major axis precipitation weighted local meteoric water line was δ 2H = 7.20 δ 18O + 9.1. The lower slope and intercept (when compared with the Global Meteoric Water Line) are typical for a warm dry climate, where subcloud evaporation of raindrops is experienced. A previously published model to estimate the degree of subcloud evaporation and the subsequent isotopic modification of raindrops was enhanced to include the vertical temperature and humidity profile. The modelled results for raindrops of 1.0 mm radius showed that on average, the measured D‐excess (=δ 2H ? 8 δ 18O) was 19.8‰ lower than that at the base of the cloud, and 18% of the moisture was evaporated before ground level (smaller effects were modelled for larger raindrops). After estimating the isotopic signature at the base of the cloud, a number of data points still plotted below the global meteoric water line, suggesting that some of the moisture was sourced from previously evaporated water. Back trajectory analysis estimated that 38% of the moisture was sourced over land. Precipitation samples for which a larger proportion of the moisture was sourced over land were 18O and 2H‐enriched in comparison to samples for which the majority of the moisture was sourced over the ocean. The most common weather systems resulting in precipitation were inland trough systems; however, only East Coast Lows contributed to a significant difference in the isotopic values. Copyright © 2016 Australian Nuclear Science and Technology Organisation. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   
109.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   
110.
Perennial bioenergy crops with deep (>1 m) rooting systems, such as switchgrass (Panicum virgatum L.), are hypothesized to increase carbon storage in deep soil. Deeply rooted plants may also affect soil hydrology by accessing deep soil water for transpiration, which can affect soil water content and infiltration in deep soil layers, thereby affecting groundwater recharge. Using stable H and O isotope (δ2H and δ18O) and 3H values, we studied the soil water conditions at 20–30 cm intervals to depths of 2.4–3.6 m in paired fields of switchgrass and shallow rooted crops at three sites in the southern Great Plains of North America. We found that soil under switchgrass had consistently higher soil water content than nearby soil under shallow-rooted annual crops by a margin of 15%–100%. Soil water content and isotopic depth profiles indicated that hydraulic redistribution of deep soil water by switchgrass roots explained these observed soil water differences. To our knowledge, these are the first observations of hydraulic redistribution in deeply rooted grasses, and complement earlier observations of dynamic soil water fluxes under shallow-rooted grasses. Hydraulic redistribution by switchgrass may be a strategy for drought avoidance, wherein the plant may actively prevent water limitation. This raises the possibility that deeply rooted grasses may be used to passively subsidize soil water to more shallow-rooted species in inter-cropping arrangements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号