全文获取类型
收费全文 | 3680篇 |
免费 | 190篇 |
国内免费 | 181篇 |
专业分类
测绘学 | 879篇 |
大气科学 | 195篇 |
地球物理 | 195篇 |
地质学 | 497篇 |
海洋学 | 148篇 |
天文学 | 14篇 |
综合类 | 752篇 |
自然地理 | 1371篇 |
出版年
2024年 | 102篇 |
2023年 | 302篇 |
2022年 | 305篇 |
2021年 | 303篇 |
2020年 | 108篇 |
2019年 | 156篇 |
2018年 | 53篇 |
2017年 | 47篇 |
2016年 | 39篇 |
2015年 | 55篇 |
2014年 | 234篇 |
2013年 | 205篇 |
2012年 | 248篇 |
2011年 | 270篇 |
2010年 | 233篇 |
2009年 | 228篇 |
2008年 | 224篇 |
2007年 | 187篇 |
2006年 | 128篇 |
2005年 | 116篇 |
2004年 | 79篇 |
2003年 | 82篇 |
2002年 | 79篇 |
2001年 | 69篇 |
2000年 | 34篇 |
1999年 | 26篇 |
1998年 | 15篇 |
1997年 | 22篇 |
1996年 | 26篇 |
1995年 | 24篇 |
1994年 | 37篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1987年 | 1篇 |
1957年 | 5篇 |
排序方式: 共有4051条查询结果,搜索用时 11 毫秒
101.
张中强 《资源导刊(河南)》2022,(3)
本刊讯1月24日,河南省自然资源厅召开全系统开展“能力作风建设年”活动推进会,深入学习贯彻党的十九届六中全会精神和习近平总书记关于加强作风建设重要论述,认真落实省第十一次党代会、省委经济工作会议、省“两会”和全省开展“能力作风建设年”活动动员部署会议精神,部署推进全系统“能力作风建设年”活动。 相似文献
102.
针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性能和时空复杂度上的平衡。其中,双注意力模块可以增强模型的特征提取能力,特征补偿模块可以融合网络中来自深浅层的道路特征。在DeepGlobe和GF-2道路数据集上的实验结果表明,DAFCResUnet模型的IoU和F1-score可以达到0.6713、0.8033和0.7402、0.8507,模型的整体精度优于U-Net、ResUnet和VNet模型。与U-Net和ResUnet模型相比,DAFCResUnet模型仅增加了少量的计算量和参数量,但IoU和F1-score均有较大幅度的提高;与VNet模型相比,DAFCResUnet模型在计算量和参数量远低于VNet的情况下取得了更高的精度,模型在精度和时空复杂度两方面均有优势。相比其他对比模型,DAFCResUnet模型具有更强的特征提取和抗干扰能力,能更好解决道路上的干扰物、与道路特征相似地物、树荫或阴影... 相似文献
103.
传统遥感影像变化检测方法依赖人工构建特征,算法设计复杂且精度不高;而将2幅不同时相影像叠加后输入神经网络的遥感影像变化检测方法会造成不同时相的特征相互影响,难以保持原始影像的高维特征,且模型鲁棒性较差。因此,本文提出一种基于改进DeepLabv3+孪生网络的遥感影像变化检测方法,以经典DeepLabv3+网络的编解码结构为基础对网络进行改进:(1)在编码阶段利用共享权值的孪生网络提取特征,通过2个输入端分别接收2幅遥感影像,以保留不同时相影像的高维特征;(2)在特征融合中用密集空洞空间金字塔池化模型代替空洞空间金字塔池化模型,通过密集连接的方式结合每个空洞卷积的输出,以提高对不同尺度目标分割的精度;(3)在解码阶段中针对不同层级特征图信息差异较大,难以融合的问题,引入基于注意力机制的特征对齐模型,引导不同层级的特征对齐并强化学习重要特征,以提升模型的鲁棒性。应用开源数据集CDD验证本文方法的有效性,并与UNet-EF、FC-Siam-conc、Siam-DeepLabv3+和N-Siam-DeepLabv3+网络对比试验。试验结果表明,本文方法在精确率、召回率、F1值和总体精度上达到8... 相似文献
104.
多源大数据融合背景下的城市功能区识别是复杂非线性系统的模式识别问题,如何有效地从大规模的轨迹数据中提取出多粒度连续性时变和多尺度空间相互作用的信息是进行城市区域功能识别的关键。本研究设计实现了一种基于时序动态图嵌入的深度学习模型,在融合滴滴出行及兴趣点数据(Point of Interest, POI)基础上,提取城市区域存在的时间和空间上的隐式特征,结合聚类分析实现城市用地功能的语义识别。结果表明,成都市中心的用地功能趋向复合多样化的发展,且用地属性随时间发生作用范围和用地类型的变化,呈现出功能随着城市群体活动而变化的时空规律。与相关文献的对比实验表明,本文提出方法在更细粒度的时间段下进行功能区识别,得到的同一类功能区域内集聚度更高,能够更好的捕获复合型区域在不同时间模式下呈现出的用地功能变化。本研究为城市用地功能识别研究提供了新的技术方法,为城市规划研究人员全面理解城区结构属性提供了有效手段,对推动城市空间得到更合理高效的利用具有一定的价值。 相似文献
105.
区域作为人类、自然、社会共同作用和互相影响的复杂系统,对区域进行生态量化建模与模拟仿真,是实现区域可持续发展战略的关键。传统机器学习方法对区域生态系统建模取得了一定的成果,但难以确定学习特征和实现时空模拟。深度学习不需事先确定训练特征,具有优异的特征学习能力,能够提高模型预测精度,因此利用深度学习进行建模具有显著优势。本文使用植被净初级生产力(NPP)、气溶胶光学厚度(AOD)和人口格网数据,充分利用深度学习的优点,采用最优深度神经网络时空模拟,得到了河南省2007-2014年3 km分辨率的生态赤字空间分布图和河南省2015-2020年的生态赤字时间预测结果并进行分析,为区域生态的科学管理和建设供科学依据和参考。 相似文献
106.
107.
犯罪预测是进行犯罪预防的前提,高效准确的犯罪预测对于提高城市管理效率、保障公共安全都具有重要的意义。当前,关于犯罪预测的已有研究大多采用单一的机器学习方法或深度学习模型,忽略了犯罪的时空依赖关系,往往难以获得准确的预测结果。本文提出一个基于深度学习技术的犯罪时空预测模型—GAERNN:(1)利用GAE模型捕获犯罪案件的空间分布特征;(2)将带有空间依赖关系的特征经序列化处理后作为GRU模型的输入,进一步提取犯罪序列的时间特征;(3)经全连接层处理获得犯罪时空预测结果,并选取MLP、GCN等基准模型进行对比实验,结合RMSE、MSE等多个指标对模型预测结果进行评估。实验结果表明:对于各模型预测结果可视化分析,GAERNN模型预测的可视化结果与实际数据分布最相符合;在各模型误差分析方面,相比预测性能较差的MLP,GAERNN模型各月份的RMSE分别降低了1.02、3.58、1.29以及0.45;在子模块有效性评估方面,相比其变体模型GAE-LSTM,GAERNN模型在各月份的MAPE分别降低了2.15%、10.07%、1.92%以及2.54%,说明GAERNN模型能显著提高盗窃犯罪时空预测... 相似文献
108.
多模态影像在辐射特征和几何特征方面存在的显著差异,会造成高精度匹配困难。因此,本文提出了一种融合多尺度深度学习特征的多模态影像匹配方法,主要利用深度残差神经网络结构自主训练学习影像的学习型特征,得到多模态图像之间更为丰富和更为准确的同名特征点对,实现了对多尺度、多时相影像的协同稳健匹配。结果表明,本文方法对于多组实验均能够得到数量丰富且分布相对均匀的同名特征点对,并具有高效、稳健的匹配性能。 相似文献
109.
测井资料中包含丰富的岩性信息,相比于取心资料,具有连续性强、成本低等优点。用机器学习方法探索测井曲线与实际取心段样本岩性之间的关系,实现储层岩性的自动识别,降低岩性识别成本,提高识别效率和准确性,可以为储层评价提供有效手段。基于岩性分类依据选择适合样本的分类方案,选取适合岩性分类问题的机器学习方法设计试验方案,提出了融合储层纵向信息的机器学习岩性识别方法,利用深度窗对常规测井数据和已知岩性数据进行了序列采样,生成了训练样本。用逻辑回归、支持向量机、随机森林、卷积神经网络和Stacking集成学习5种不同方法分别建立模型,对新疆某油田的强非均质岩层原始样本进行了岩性识别。结果表明,当深度窗宽度与岩层厚度相匹配时,在原始样本具有强非均衡性的情况下,用本方法对其进行预处理之后,各个机器学习方法获得的岩性识别准确率均有较大提高。深度窗的宽度决定了方法识别岩层厚度的精度,深度窗越小,识别精度越高;深度窗越大能够保留的纵向信息越多,对相应厚度的岩层识别准确率越高。本文的融合储层纵向信息的机器学习岩性识别方法能提升测井资料岩性识别的准确性,给非均质薄岩层的自动有效识别提供了经济有效的参考方案。 相似文献
110.
随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要依赖全国各乡镇相关部门逐级调查上报,工作量较大。本文基于高分辨率遥感影像,将深度学习模型和条件随机场模型相结合引入到乡镇固体废弃物的提取研究中,探索一种基于深度卷积神经网络的乡镇固体废弃物提取模型。由于固体废弃物在影像上表现为面积小,分布破碎等特点,为了提高工作效率,将模型特分为识别和提取2个部分:① 通过全连接卷积网络(CNN)对固体废弃物进行快速识别判断,筛选感兴趣区域影像块;② 在传统的全卷积神经网络(FCN)的基础上加入条件随机场模型(CRF)提取固体废弃物边界,提高整体分割精度。根据安徽、山西等地区相关部门上报固体废弃物堆放点以及住房与城乡建设部城乡规划管理中心进行野外检查的结果,实验最终识别精度达到86.87%以上;形状提取精度为89.84%,Kappa系数为0.7851,识别与提取精度均优于传统分类方法。同时,该方法已经逐步应用于住房和城乡建设部有关成都、兰州、河北等部分乡镇非正规固体废弃物的核查工作,取得了较为满意的结果。 相似文献