首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   83篇
  国内免费   173篇
测绘学   19篇
大气科学   425篇
地球物理   10篇
地质学   31篇
海洋学   18篇
天文学   1篇
综合类   5篇
自然地理   196篇
  2024年   8篇
  2023年   18篇
  2022年   16篇
  2021年   20篇
  2020年   16篇
  2019年   20篇
  2018年   16篇
  2017年   9篇
  2016年   19篇
  2015年   17篇
  2014年   31篇
  2013年   31篇
  2012年   35篇
  2011年   24篇
  2010年   41篇
  2009年   40篇
  2008年   37篇
  2007年   62篇
  2006年   50篇
  2005年   43篇
  2004年   35篇
  2003年   44篇
  2002年   25篇
  2001年   16篇
  2000年   10篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
排序方式: 共有705条查询结果,搜索用时 31 毫秒
81.
详细记录了内蒙古地区2000—2007年沙尘天气过程发生情况并做了编号;给出了其间各年沙尘天气过程出现的次数、时间、范围、强度及其影响。  相似文献   
82.
沙尘天气频率与相关气象因子的关系   总被引:7,自引:3,他引:4  
基于北京及其周边14个国家基本气象站1971—2000年气象资料的相关分析,指出风速、相对湿度是影响沙尘天气的关键气象因子,用这两个气象因子构建了月沙尘气象指数。月沙尘气象指数与沙尘天气频率具有较一致的周期性,沙尘天气日的沙尘气象指数是非沙尘日指数的倍数关系。另外,根据月沙尘气象指数在不同月份的分布特征,给出了相应的季节性气象指数计算方法,对14个站计算的结果显示,季节性气象指数与沙尘天气频率有很好的线性关系,这种线性关系具有明显的区域特征。  相似文献   
83.
石家庄大气污染与沙尘天气的关系分析   总被引:3,自引:1,他引:2       下载免费PDF全文
利用2002—2006年石家庄市逐时气象资料和环境监测资料,分析了8次典型沙尘天气对空气污染的影响。结果表明:沙尘天气的首要污染物均是可吸入颗粒物,春季中度以上污染日平均出现在沙尘日当日或次日;造成石家庄沙尘天气污染源分外来型、本地型以及二者共同影响型3种;其中,本地型沙尘污染多受冷锋影响,PM10浓度与风速呈正相关。而外来型污染多处于弱气压场控制,PM10浓度与南风呈反相关,而当风向转偏北时则利于污染物积累。  相似文献   
84.
笔者重点分析了哈尔滨河床冲积物的粒度组成,结合沙尘沉降物的粒度组成,论述了裸露河床冲积物对沙尘天气的影响。河床冲积物及沙尘沉降物粒度分析结果显示,裸露河床冲积物粒径大于63μm的颗粒占84%以上,而小于63μm粒径的颗粒很少,小于10μm的颗粒微乎其微;沙尘沉降物中小于63μm的粉粘颗粒含量在90%以上。对河床冲积物而言,无论是砂级别的粗颗粒物质还是粉粘级别的细颗粒物质都与沙尘沉降物的粒度无相关性,对沙尘暴物质组成没有影响或影响很小。受砂级别的粗颗粒物质扬起高度和搬运距离的限制,沙尘暴发生时,裸露河床中的冲积物颗粒不会被远距离搬运而影响到整个哈尔滨地区,真正影响整个哈尔滨地区的沙尘物质是小于63μm的粉砂级别的颗粒,特别是小于10μm的粉尘。笔者认为对哈尔滨沙尘天气产生重大影响的是含有大量细颗粒物质的城市地表土和建筑土等,这些地域是防止沙尘天气的重点治理区域。  相似文献   
85.
中亚干旱区是全球重要的粉尘源区,是全球变化与区域响应研究的关键区域之一。中亚粉尘形成搬运沉积过程一直是全球变化研究的热点科学问题。本文选取位于伊犁盆地北部、北天山南麓不同地形和气候条件下的两处黄土剖面,对其沉积速率最高的层段进行了粒度测试分析,结合聚类分析和粒度分布曲线拟合两种方法,重建了黄土粉尘的堆积过程。伊犁盆地黄土主要由远源和近源物质组成,分别由高空西风和中尺度的区域风搬运而来。高空西风所携带的远源粘粒级矿物颗粒对盆地东部降雨较高地区有一定的贡献,而在盆地西部不容易沉降下来。中尺度区域风所搬运的近源物质组成了黄土沉积物的主体,而近源区沉积物的可用性在黄土的形成过程中扮演着重要角色。另外,非风暴过程中(沙尘暴过后)出现的浮尘在沙尘暴天气频率减少的时期对黄土的发育有重要贡献,而在沙尘暴天气频发的时期,较差的植被覆盖度能够使得已经沉降下来的浮尘组分重新被扬起至大气中。由此建立了一个粉尘堆积的概念模型。认识黄土粉尘的堆积过程对现代沙尘天气的治理和人类生存环境的改善具有重要作用。  相似文献   
86.
2014年4月大气环流和天气分析   总被引:1,自引:1,他引:1  
樊利强  张涛  孙瑾 《气象》2014,40(7):898-904
2014年4月大气环流特征为,北半球极涡呈单极型分布,中心位于喀拉海北端附近;亚洲大陆东部高压脊强度偏强,导致4月我国气温较常年同期(11.0℃)偏高1.1℃,为1961年同期以来第五高值。东亚大槽强度和位置、南支系统和西北太平洋副热带高压接近常年平均状况。4月全国平均降水量为43.7 mm,比常年同期略偏少。月内,江南南部和华南等地出现短时强降水、雷雨大风等强对流天气;北方地区出现多次沙尘天气过程;此外,部分站次出现极端高温、极端降温事件。  相似文献   
87.
京津冀地区一次强沙尘天气过程的成因及特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规污染物监测资料、卫星资料和再分析资料等,对京津冀地区在2017年春季遭遇的一次强沙尘天气过程进行分析。结果表明,此次过程是由地面冷锋过境,高空槽后冷空气持续补充引起,沙源地主要位于巴丹吉林、腾格里沙漠,随后以西北路径输送至京津冀地区。前期沙源地感热通量迅速增大,与中低层冷平流叠加,导致不稳定层结增强,助于起沙;高空强风速带加强并向下延伸,中低层次级环流发展,不但使沙尘传输并下降至地面,而且使高层高动量和高位涡冷空气下传,促进低空急流形成、低层系统发展,使大风及沙尘天气维持;沙尘过境时,地面至4 km高度存在沙尘型气溶胶,PM_(2.5)和PM_(10)浓度变化趋势较一致并达到重度污染水平,且气溶胶光学厚度(Aerosol Optical Depth,AOD)与空气质量指数(Air Quality Index,AQI)具有较好的时空匹配关系,重污染时段AOD值大于1,污染减弱时AOD值降至0.6以下。  相似文献   
88.
塔城地区沙尘天气变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
 根据1961-2005年塔城地区9个气象站地面实测资料,用线性趋势分析、Mann-Kendall、相关分析和合成分析等方法对塔城地区沙尘天气的时空分布及变化特征进行了分析,并对其机理进行了讨论。结果表明:1) 沙尘天气高发区位于沙湾、乌苏一带,次高值中心位于额敏,沙尘日数与大风日数、降水量空间分布呈反向分布的特点;2) 年均沙尘暴日数为3.8 d,主要发生在4-9月;3) 沙尘日数呈减少的趋势,其中沙尘暴日数以1.0 d/10a的速率显著减少,大风日数以10.5 d/10a的速率显著减少;4) 沙尘暴、扬沙、浮尘日数分别在1993、1992、1973年发生了显著减少的突变;5) 近半个世纪来新疆的冷空气活动强度和频率有所减弱(小),而大风日数的显著减少是沙尘日数减少的主要原因。  相似文献   
89.
利用河西走廊东部民勤、凉州、永昌3个气象站1960~2010年冬季0、5、10、15、20 cm地温和1961~2011年春季沙尘暴和扬沙天气的常规观测资料,分析了河西走廊东部冬季浅层地温和春季沙尘天气日数的时空特征,进而探讨了春季沙尘天气与冬季浅层地温的关系。结果表明:受海拔高度、地理位置等影响,河西走廊东部冬季浅层地温有明显地域差异,其中高海拔的永昌最低,低海拔的民勤次之,而海拔介于民勤和永昌之间的凉州最高;春季沙尘天气日数自低海拔地区向高海拔地区逐渐减少,即民勤最多、凉州区次之、永昌最少;河西走廊东部的沙尘天气日数与浅层地温在空间上呈一定的负相关,二者的年变化趋势明显相反,即冬季浅层地温总体呈逐年升高的趋势,而春季沙尘日数呈逐年减少的趋势,且都存在6~7 a和9~10 a的周期;相关分析表明,河西走廊东部春季沙尘日数与冬季浅层地温呈负相关,其中与0 cm地温的相关性最显著。  相似文献   
90.
沙尘气溶胶光学厚度的全球分布及分析   总被引:5,自引:1,他引:5  
利用全球气溶胶数据GADS(Global Aerosol Data Set)计算了冬夏两季4种类型(积聚型、核型、粗粒型和传输型)沙尘气溶胶0.55μm光学厚度的全球分布。通过分析得出,气溶胶的消光系数和垂直厚度对光学厚度的影响很大。全球沙尘气溶胶分布具有明显的季节和地理差异,4个沙尘暴多发区,分别位于北非、中亚地区、澳大利亚西部和北美西部。中亚地区冬季沙尘气溶胶强度和范围比夏季大,北美和澳大利亚地区则相反,冬季光学厚度最大值位于北非的中部地区,而夏季其最大值位于非洲北部靠近大西洋的地区。沙尘气溶胶对<8μm的辐射吸收作用很弱,散射能力较强;对于>8μm的辐射吸收能力很强,吸收带位主要于8~11μm范围内。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号