首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   7篇
测绘学   3篇
大气科学   9篇
地球物理   26篇
地质学   64篇
海洋学   11篇
天文学   20篇
综合类   2篇
自然地理   17篇
  2024年   6篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   10篇
  2010年   7篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   4篇
  1995年   1篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1973年   1篇
排序方式: 共有152条查询结果,搜索用时 46 毫秒
71.
Five mafic dike swarms between 30° and 33°45′S were studied for their geochemical signature and kinematics of magma flow directions by means of AMS data. In the Coastal Range of central Chile (33°−33°45′S), Middle Jurassic dike swarms (Concón and Cartagena dike swarms, CMDS and CrMDS, respectively) and an Early Cretaceous dike swarm (El Tabo Dike Swarm, ETDS) display the presence of dikes of geochemically enriched (high-Ti) and depleted (low-Ti) basaltic composition. These dikes show geochemical patterns that are different from the composition of mafic enclaves of the Middle Jurassic Papudo-Quintero Complex, and this suggests that the dikes were injected from reservoirs not related to the plutonic complex. The mantle source appears to be a depleted mantle for Jurassic dikes and a heterogeneous-enriched lithospheric mantle for Cretaceous dikes. In the ETDS, vertical and gently plunging magma flow vectors were estimated for enriched and depleted dikes, respectively, which suggest, together with variations in dike thickness, that reservoirs were located at different depths for each dike family. In the Elqui Dike Swarm (EDS) and Limarí Mafic Dike Swarm (LMDS), geochemical patterns are similar to those of the mafic enclaves of the Middle Jurassic plutons. In the LMDS, east to west magma flow vectors are coherent with injection from neighbouring pluton located to the east. In the EDS, some dikes show geochemical and magma flow patterns supporting the same hypothesis. Accordingly, dikes do not necessarily come from deep reservoir; they may propagate in the upper crust from coeval shallow pluton chamber. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
72.
73.
74.
We compare nutation time series determined by several International VLBI Service for geodesy and astrometry (IVS) analysis centers. These series were made available through the International Earth Rotation and Reference Systems Service (IERS). We adjust the amplitudes of the main nutations, including the free motion associated with the free core nutation (FCN). Then, we discuss the results in terms of physics of the Earth’s interior. We find consistent FCN signals in all of the time series, and we provide corrections to IAU 2000A series for a number of nutation terms with realistic errors. It appears that the analysis configuration or the software packages used by each analysis center introduce an error comparable to the amplitude of the prominent corrections. We show that the inconsistencies between series have significant consequences on our understanding of the Earth’s deep interior, especially for the free inner core resonance: they induce an uncertainty on the FCN period of about 0.5 day, and on the free inner core nutation (FICN) period of more than 1000 days, comparable to the estimated period itself. Though the FCN parameters are not so much affected, a 100 % error shows up for the FICN parameters and prevents from geophysical conclusions.  相似文献   
75.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   
76.
Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p < 0.001), presenting adjusted R 2 between 0.69 and 0.90. Center-Southern Brazil is mainly hit by frosts from mid-fall (April) to mid-spring (October). The period from November to March is considered as frost-free, being very rare a frost day within that period. Monthly F MET and F AGR presented significant sigmoidal relationships with T MN (p < 0.0001), with adjusted R 2 above of 0.82. The residuals of the frost day models were random, which means that the sigmoidal models performed quite well for interpreting the frost day variability throughout the study area. The highlands of Santa Catarina, Rio Grande do Sul, São Paulo, and Minas Gerais had in average more than 25 and 13 frosts per year, respectively, for F MET and F AGR. The F MET and F AGR maps developed in this study for Center-Southern Brazil is a useful tool for farmers, foresters, and researchers, since they contribute to reduce frost spatial and temporal uncertainty, helping in planning project for strategic purposes. Furthermore, the monthly F MET and F AGR maps for this Brazilian region are the first zoning of these variables for the country.  相似文献   
77.
78.
79.
80.
Mapping soil pollution by spatial analysis and fuzzy classification   总被引:1,自引:0,他引:1  
Spatial analysis and fuzzy classification techniques were used to estimate the spatial distributions of heavy metals in soil. The work was applied to soils in a coastal region that is characterized by intense urban occupation and large numbers of different industries. Concentrations of heavy metals were determined using geostatistical techniques and classes of risk were defined using fuzzy classification. The resulting prediction mappings identify the locations of high concentrations of Pb, Zn, Ni, and Cu in topsoils of the study area. The maps show that areas of high pollution of Ni and Cu are located at the northeast, where there is a predominance of industrial and agricultural activities; Pb and Zn also occur in high concentrations in the northeast, but the maps also show significant concentrations of Pb and Zn in other areas, mainly in the central and southeastern parts, where there are urban leisure activities and trade centers. Maps were also prepared showing levels of pollution risk. These maps show that (1) Cu presents a large pollution risk in the north–northwest, midwest, and southeast sectors, (2) Pb represents a moderate risk in most areas, (3) Zn generally exhibits low risk, and (4) Ni represents either low risk or no risk in the studied area. This study shows that combining geostatistics with fuzzy theory can provide results that offer insight into risk assessment for environmental pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号