Moisture is one of the important parameters in soil polarized spectrum. It has great significance in soil remote sensing band selection and image interpretation; it also provides the information for soil investigation and analysis on physical and chemical properties. In this paper we tested and analyzed the soil polarized spectrum with different moisture in 350?~?2,500 nm wavelength, to study on the relationship between soil polarized spectral data and moisture, to determine the spectral response and changes in soil moisture, and establish models between spectral data and soil moisture. We also designed a orthogonal test on the various factors that affect soil polarized spectral characteristics, in which we studied soil moisture, polarized angle, detected angle and azimuth of the various factors and their interactions. The results showed it was most significant that the soil moisture and the interaction of soil moisture and polarized angle, followed by the interaction effect of detected angle and moisture, while the polarized angle had a little impact on the soil polarized spectrum. 相似文献
A comprehensive study on the phytoplankton standing stocks, species composition and dominant species in the eutrophic Changjiang(Yangtze River) Estuary(CE) was conducted to reveal the response of phytoplankton assemblage to Changjiang Diluted Water(CDW) and upwelling in the spring. Phytoplankton presented peak standing stocks(13.03 μg/L of chlorophyll a, 984.5×103 cells/L of phytoplankton abundance) along the surface isohaline of 25. Sixty-six species in 41 genera of Bacillariophyta and 33 species in 19 genera of Pyrrophyta were identified, as well as 5 species in Chlorophyta and Chrysophyta. Karenia mikimotoi was the most dominant species, followed by Prorocentrum dentatum, Paralia sulcata, Pseudo-nitzschia delicatissima and Skeletonema costatum. A bloom of K. mikimotoi was observed in the stratified stations, where the water was characterized by low nitrate, low phosphate, low turbidity, and specific ranges of temperature(18–22 °C) and salinity(27–32). K.mikimotoi and P. dentatum accumulated densely in the upper layers along the isohaline of 25. S. costatum was distributed in the west of the isohaline of 20. Benthonic P. sulcata presented high abundance near the bottom,while spread upward at upwelling stations. CDW resulted in overt gradients of salinity, turbidity and nutritional condition, determining the spatial distribution of phytoplankton species. The restricted upwelling resulted in the upward transport of P. sulcata and exclusion of S. costatum, K. mikimotoi and P. dentatum. The results suggested that CDW and upwelling were of importance in regulating the structure and distribution of phytoplankton assemblage in the CE and the East China Sea. 相似文献
AbstractCobalt-rich crust has attracted increased attention due to their economic value. Studies have indicated that seamounts in the Western Pacific Ocean are rich in cobalt-rich crust resources. The Caiwei Guyot in Western Pacific Ocean is one of the cobalt-rich crust exploration areas contracted between China and the International Seabed Authority. A large volume of research has been conducted to elucidate the tectonic evolution, basement type, sediment type, gravity and magnetic anomaly characteristics, and geochemical characteristics of shallow surface sediments at Caiwei Guyot. However, a research gap exists on the sedimentary strata below the pelagic deposits and above the volcanic basement of the Caiwei Guyot. This paper summarizes that two main types of sediments existing on the top of Caiwei Guyot. The deposition thickness on the top of Caiwei Guyot is characterized by three sedimentary centers and exposed periphery. Pelagic sediments are difficult to form at the northeastern portion and edge area of Caiwei Guyot due to the strong bottom current environment, which makes these areas suitable for crust growth. This paper delineated three cobalt-rich crust prospective areas at the Caiwei Guyot with of significant implications for exploration and mining-lease-block selections at Caiwei Guyot. 相似文献
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed. 相似文献