首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   234篇
  国内免费   358篇
测绘学   208篇
大气科学   125篇
地球物理   159篇
地质学   611篇
海洋学   179篇
天文学   22篇
综合类   83篇
自然地理   110篇
  2024年   7篇
  2023年   29篇
  2022年   59篇
  2021年   70篇
  2020年   59篇
  2019年   81篇
  2018年   57篇
  2017年   59篇
  2016年   66篇
  2015年   77篇
  2014年   56篇
  2013年   87篇
  2012年   102篇
  2011年   75篇
  2010年   76篇
  2009年   88篇
  2008年   83篇
  2007年   59篇
  2006年   67篇
  2005年   66篇
  2004年   43篇
  2003年   21篇
  2002年   30篇
  2001年   25篇
  2000年   16篇
  1999年   10篇
  1998年   1篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1957年   1篇
排序方式: 共有1497条查询结果,搜索用时 15 毫秒
111.
将曾庆存等提出的大气环流的季节划分和计算季风的理论方法作了改进,使之更便于研究季风的建立过程.该理论方法将环流突变和季风建立时段,其"变差度"和与其前和其后场的"相似度"等由空间场的泛函随时间的变化(即数学名词上的"流"[flow])一起求出来.研究Ⅰ先分析气候平均场,Ⅱ分析各个别年份的情况及年际变化.研究Ⅰ的结果表明:(1)该方法可以客观定量地定出"突变"时段的关键日期;与季风建立过程联系,即是季风建立的"预兆日期",它比人们用天气-气候学方法(甚至用别的气象要素)定出的可以明显感觉到的或有明显实用价值的"季风来临日期"要早2至4天.(2)在北半球亚澳季风系统区域,夏季风的来临在许多关键地区伴有明显的环流突变,建立和推进者很快,但也有许多区域不表现为当地环流的突变,推进速度也慢.(3)北半球亚澳季风系统低空的热带季风分支,在6月中以前可明确区分为3个子系统,(a)西太平洋暖池和邻近低纬区域,4月中下旬建立;(b)热带东北印度洋(北界与孟加拉湾相邻,但不包括其在内)及索马里东边海洋,4月末至5月初建立;和(c)南海区域,5月上旬从南到5月下旬到北部.南海夏季风向北推进最快,于5月末候即可达北回归线附近,然后与暖池西北区域风场的突变一起,于6月中旬影响到东亚30°N区域;印度洋季风于6月初到达印度半岛东南端,然后逐渐推向印-巴次大陆.7月中以后,热带季风才连成一片,由非洲东岸直至长江下游和菲律宾附近.副热带季风分支于6月中旬可以感到其影响,于7、8月盛行于东亚和西太平洋区域,且结构和演变都比较复杂;6~7月间只表现为在(5~20°N,120~150°E)区域有强的环流突变(与副高增强并北移对应),7月中至8月底,则在上述区域和沿30°N的长江下游和日本以南的洋面上有3个强的环流突变中心(对应于副高又一次增强北移和西伸).这里暂不讨论温寒带季风分支.(4)季风具有鲜明的三度空间斜压结构,尤其是在低空季风"爆发"之前,平流层早已有强的环流突变,季节调整完成,然后突变向下延伸(虽然强度大减),跟着就有当地的低空季风"爆发"(建立).平流层和对流层环流的相互作用及其与季风建立的关系很值得进一步研究.  相似文献   
112.
针对高光谱影像分类问题,提出了基于深度卷积循环神经网络的高光谱影像空谱特征分类方法.首先将高光谱数据立方体看作一组特征序列;然后利用深度卷积循环神经网络构建特征序列的依赖关系,并采用"预训练+微调"的训练策略对深层网络模型进行训练,从而使得所设计的深层网络在训练样本较少的情况下也能得到更加充分的优化.在Pavia大学和Indian Pines数据集上的试验结果表明,构建的深度卷积循环神经网络的分类精度比RNN方法分别提升了9.49%和5.8%.  相似文献   
113.
基于波浪边界层理论及单向流泥沙起动Shields曲线,推证出波浪泥沙起动Shields曲线;基于波流边界层理论,提出表述波流边界层动力特征的波流比因子X及非线性作用因子Y,并建立了Y与X的相关关系;在此基础之上,结合单向流及波浪泥沙起动Shields曲线,推证出波流共同作用下泥沙起动Shields曲线。结果表明:波浪泥沙起动Shields曲线在层流区与单向流光滑紊流区曲线保持一致,粗糙紊流区与单向流粗糙紊流区曲线保持一致,过渡区线型为折线,由层流区及粗糙紊流区曲线延长交汇获得;X及Y能够合理地表征波流边界层动力对比特征及非线性作用特征;波流泥沙起动Shields曲线介于波浪及单向流泥沙起动Shields曲线之间,随着波流比因子X的不同,依据非线性作用因子Y,自动在波浪及单向流泥沙起动Shields曲线之间非线性过渡。建立的波流泥沙起动Shields曲线与试验结果吻合较好,且能够概括单向流、波浪及波流等不同动力及细沙、粗沙等不同粒径的泥沙起动条件。  相似文献   
114.
钽作为一种重要的稀有金属矿产,广泛应用于各种工业领域。世界上的钽矿床成因主要为内生成矿,尤以花岗岩型和伟晶型最为重要,碰撞造山过程导致的多期次岩浆活动是有利的钽矿成矿环境。南部非洲钽矿资源丰富且品位高,主要为花岗岩型和伟晶岩型钽矿床,空间上主要分布在卡普瓦尔克拉通、刚果克拉通、津巴布韦克拉通以及基巴拉、泛非、达马拉等碰撞环境下形成的同造山—后造山构造带内,时间上主要集中在太古宙(2.85~2.58 Ga)、古元古代(2.48~2.0 Ga)、晚中元古代—早新元古代(1026~880 Ma)以及泛非活动期(500~440 Ma),且不同钽矿带内含钽矿物稀有及稀土元素分布特征差异较大。南部非洲发育大量与钽矿形成密切相关的花岗岩及伟晶岩岩体,资源潜力巨大,未来有望成为世界上主要的钽资源接续基地。  相似文献   
115.
DMC+4小卫星在国际灾害监测中的应用与评价   总被引:9,自引:0,他引:9  
李伯林  左烨 《遥感学报》2005,9(4):468-474
针对国际灾害监测星座应用技术和中国各种自然灾害的现状,着重研究了DMC(DisasterMonitoringConstellation)星座应用技术和DMC 4小卫星的数据特点,研究了利用小卫星星座对防灾、抗灾救灾的突出作用,研究了小卫星地面系统集成技术和星地一体化运营、管理和控制体系,以便进一步推动国内小卫星技术、遥感应用技术、卫星星座技术、天地一体化运管控技术和机制创新的发展。促进中国灾害监测星座的研制,最终实现对各种自然灾害的实时、动态监测。  相似文献   
116.
房产测量的主要目标是服务于产权登记。作为不动产的房屋相对于动产来说,由于大宗性、不可移动性及与土地的关联性决定了其空间形态界定的复杂性。《房产测量规范》没有提出产权评判的原则与方法,以至于房屋建筑面积直接替代了房产面积。本文结合案例,提出了基于产权空间分析的房产测量方法。  相似文献   
117.
118.
本文在1987~2006年兰州断陷盆地典型水源地地下水环境监测资料基础上,通过2007年10月环境地质补充调查采集地下水样品11组、地表水1组,综合分析了断陷盆地地下水集中开采区浅层地下水水化学特征及时空分布规律,以及黄河条带状为补给区的地下水与开采降落漏斗的水质演变关系。根据多年开采过程中地下水水化学成分的变化及影响因素,阐明了水化学组分与地下水位的密切关系;利用开采量水质时空变化对比资料,得出地下水位下降排泄区与傍河区地下水存在的水力联系。依据本次环境地质调查结果和水样实测数据,进一步论证了傍河区地下水受黄河激发补给因素控制的结论。  相似文献   
119.
勘查区位于老挝西北部之波乔省,地表风化严重、浮土掩盖厚、深林茂密、基岩露头少,虽然局部地段出露有大量的铁帽,但不敢判断该区是否有大规模的磁铁矿.为此,我们采用1∶10000地面高精度磁法测量以了解磁铁矿的有无、范围、延伸、规模.后期勘探阶段开展2.5D人机交互正反演工作以了解深部磁铁矿的有无.结果表明,在老挝西北部地质勘查程度低的地区开展高精度磁测扫面工作是寻找磁铁矿产行之有效的方法,能够解决基础地质问题,矿山勘查问题,后期运用2.5D人机交互正反演能够解决一定的矿层预测工作.  相似文献   
120.
抽水和建筑荷载双重作用下的地面沉降模型   总被引:1,自引:0,他引:1  
依据含水层质量守恒原理,推导了非固结地层在建筑荷载作用下的地面沉降机理模型,并将其与Jacob假定下抽水引起的地面沉降弹性模型相比较,结果发现两种模型的机理表达式完全一致,仅区别于水动力原因或实质的不同.在同一坐标系中,根据线性叠加原理,抽水沉降漏斗和荷载沉降漏斗可能都落在地下水位降落漏斗内.假定两者为相互独立事件,给出了抽水和建筑荷载双重作用下的地面沉降模型,表明其如果以水位降深为制约因子,则可以对水动力实质完全不同的两种沉降过程进行线性叠加计算.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号