首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   9篇
  国内免费   12篇
大气科学   16篇
地球物理   65篇
地质学   64篇
海洋学   138篇
天文学   66篇
综合类   2篇
自然地理   12篇
  2021年   6篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2015年   2篇
  2014年   12篇
  2013年   12篇
  2012年   4篇
  2011年   11篇
  2010年   21篇
  2009年   21篇
  2008年   12篇
  2007年   19篇
  2006年   14篇
  2005年   23篇
  2004年   13篇
  2003年   16篇
  2002年   5篇
  2001年   8篇
  2000年   9篇
  1999年   12篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   12篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
  1958年   1篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
121.
Coral reef terraces are one of the best recorders of relative sea-level changes during the last glacial cycle. Thus far, knowledge of relative sea-level record based on coral reefs during the marine Oxygen Isotope Stage (OIS) 3 has been limited to studies of the Huon Peninsula, Papua New Guinea. High-precision a α-spectrometric 230Th/234U dating demonstrated an offlapping sequence of five coral reef complexes, ages of which are 66, 64, 62, 55 and 52 ka, in the northern part of Kikai Island, central Ryukyus of Japan. Interstadial reefs, characterized by deepening-upward sequences of coral assemblages, recorded three hemicycles from transgression to highstand at 52, 62, and 66 ka, during which these reefs were drowned. These highstands in the relative sea-level record can be correlated with the eustatic record reconstructed from the Huon reef terraces and with the interstadials 14, 18, and 19 of the GISP 2 oxygen isotope record. This consistency confirms the Huon sea-level record of OIS 3 and implies that the eustatic sea level responded to the millennial-scale climate changes even during the glacial period of OIS 4.  相似文献   
122.
This paper presents a new type of electromagnetic damper with rotating inertial mass that has been developed to control the vibrations of structures subjected to earthquakes. The electromagnetic inertial mass damper (EIMD) consists of a ball screw that converts axial oscillation of the rod end into rotational motion of the internal flywheel and an electric generator that is turned by the rotation of the inner rod. The EIMD is able to generate a large inertial force created by the rotating flywheel and a variable damping force developed by the electric generator. Device performance tests of reduced‐scale and full‐scale EIMDs were undertaken to verify the basic characteristics of the damper and the validity of the derived theoretical formulae. Shaking table tests of a three‐story structure with EIMDs and earthquake response analyses of a building with EIMDs were conducted to demonstrate the seismic response control performance of the EIMD. The EIMD is able to reduce story drifts as well as accelerations and surpasses conventional types of dampers in reducing acceleration responses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
123.
A new method for the calculation of coronal magnetic field is proposed and it is shown to reproduce the EUV features in the corona as observed by Skylab experiments satisfactorily well. One of the remarkable points is that it reproduces the loopy threads in the active region corona and also the large scale field lines connecting active regions. The existence of coronal current is expected wherever the present coronal-current-free model fails to represent the feature. A method of calculating the coronal sheet-current is also developed with the purpose of knowing the shape of the current sheet and the amount of magnetic stress energy stored due the the presence of it by comparing the calculated field configuration with the observed local distortion of the EUV threads. This may be used in pinning down the possible site of the flare and in discussing the flare occurrence in terms of the energy stored there.During the preparation of this work, Poletto et al. (1975) calculated the magnetic field shape in Schmidt's method to compare with the soft X-ray feature obtained by Skylab.  相似文献   
124.
Distribution of uranium and thorium isotopes in a short sediment core obtained offshore of the Selenga Delta in Lake Baikal, Siberia, was investigated to establish their sedimentary behaviors and to look for a linkage to paleoenvironmental changes. The sediments were composed of dominantly fine detrital materials (70–85%) and a relatively high sedimentation rate (ca. 0.03 cm y−1). The depth profile of 238U content in bulk sediment samples showed a large variation of 70–123 Bq kg−1, while 232Th profile showed a relatively narrow range from 36 to 56 Bq kg−1. The observed 234U/238U activity ratios revealed a marked disequilibrium ranging from 1.53 to 1.84 with a mean value of 1.71 ± 0.07, demonstrating the presence of 50–80% authigenic 238U in the bulk sediments. The distribution of this authigenic 238U did not display any clear correlation with variations in sediment composition (organic, carbonate, Bio-SiO2 and mineral contents) including grain size median. The profile of terrigenous 238U showed a relatively similar pattern to that of 232Th. Results of sequential leaching indicate that 238U in Fe–Mn oxyhydroxides fractions were responsible for the distribution of authigenic 238U rather than in Bio-SiO2 fraction. The distribution of authigenic 238U in the bottom sediments may be explained by the fluctuation of U adsorption capacity on particles including organic matter and Fe–Mn oxyhydroxides before they entered the lake. This study highlights the potential use of authigenic and terrigenous U (Th) signatures in sediments to trace the behavior of U (Th) and to reconstruct environmental (e.g., hydrological) changes in the lake catchment area.  相似文献   
125.
Relations in year-to-year variability between wintertime Sea-Ice Concentrations (SICs) in the Okhotsk Sea and atmospheric anomalies consisting of zonal and meridional 1000-hPa wind speeds and 850-hPa air temperatures are studied using a singular value decomposition analysis. It is revealed that the late autumn (October–November) atmospheric conditions strongly influence sea-ice variability from the same season (late autumn) through late winter (February—March), in which sea-ice extent is at its maximum. The autumn atmospheric conditions for the positive sea-ice anomalies exhibit cold air temperature anomalies over the Okhotsk Sea and wind anomalies blowing into the Okhotsk Sea from Siberia. These atmospheric conditions yield anomalous ocean-to-atmosphere heat fluxes and cold sea surface temperature anomalies in the Okhotsk Sea. Hence, these results suggest that the atmospheric conditions affect the sea-ice through heat anomalies stored in sea-ice and oceanic fields. The late autumn atmosphere conditions are related to large 700-hPa geopotential height anomalies over the Bering Sea and northern Eurasia, which are related to a stationary Rossby wave propagation over the North Pacific and that from the North Atlantic to Eurasia, respectively. In addition, the late autumn atmospheric preconditioning also plays an important role in the decreasing trend in the Okhotsk sea-ice extent observed from 1980 to the mid-1990s. Based on the lagged sea-ice response to the late autumn atmosphere, a simple seasonal prediction scheme is proposed for the February–March sea-ice extent using four-month leading atmospheric conditions. This scheme explains 45% of the variance of the Okhotsk sea-ice extent.  相似文献   
126.
Many of ilmenites ABO3 compounds bearing transition elements have semiconductive, ferroelectric and antiferromagnetic properties. The high-pressure diffraction studies of FeTiO3 have been conducted up to 8.2 GPa using synchrotron radiation in KEK at Tsukuba with diamond anvil cell. The compression mechanism of FeTiO3 ilmenite has been investigated by the structure refinements converged to the reliable factors R = 0.05. The deformations of the FeO6 and TiO6 octahedra were reduced with increasing pressure. In order to elucidate the electric conductivity change with pressure, electron density distribution of ilmenite have been executed by maximum entropy method (MEM) using single-crystal diffraction intensity data. MEM based on F obs(hkl) of FeTiO3 clearly shows electron density in comparison with the difference Fourier synthesis based on F obs(hkl) − F calc(hkl). The radial distribution of the electron density indicates electron localization around the cation positions. The bonding electron density found in bond Fe–O and Ti–O is lowered with pressure. The isotropic temperature factors B iso become smaller with increasing pressure. Nevertheless the thermal vibration is considerably restrained by the compression, the electric conductivity is enhanced with pressure. Neither charge transfer nor electron hopping between Fe and Ti along the c axis in FeTiO3 is plausible under high pressure. But the electric conductivity due to electron super-exchange in Fe–Fe and Ti–Ti has been clarified by the MEM electron density distribution. The anisotropy in the electric conductivity has been clarified.  相似文献   
127.
The behavior of low density fresh water injected at the surface of a uniformly rotating saline water was investigated on the basis of a tank experiment. The injected water mass shows a clockwise circulation and grows gradually with an axisymmetric convex shape, until it breaks into two vortices at a critical size. An experimental formula for the change of radius of the water mass with time for the axisymmetric stage is obtained. It is shown that within our experimental range of values the radius of the water mass increases almost in proportion tot 1/2, wheret is the elapse time, while the inviscid theory indicates that the radius should increase in proportion tot 1/4. The dependence of the radius on elapse time is essential for forecasting the extent of discharged waters. The position of the maximum azimuthal velocity is fixed at \(V = - ge^{ - a^2 q^2 } \) within our experimental range of values wherer is the radial coordinate,f the Coriolis parameter,v the viscosity coefficient andQ the flow rate of injection, respectively. This radius corresponds to the radial scale derived by Gillet al. (1979). The steadiness of the position of the maximum azimuthal velocity may be essential in partition of the water mass into inner and outer regions and in the understanding the derived experimental formula. The critical radius for breaking is also investigated. The radius is shown to be independent ofQ and to be almost proportional to (Δ ρ / ρ )1/2 f -1 whereρ is the density of the saline water andΔρ the density difference between the saline and injected waters. Even after the water supply is cut off in the axisymmetric stage, the radius of the water mass increases at almost the same rate as before, while its thickness decreases. The behavior after supply cut-off is discussed in the Appendix.  相似文献   
128.
129.
Summary Mechanisms associated with Alpine lee cyclogenesis during the early phase of their generation are investigated using a variational quasigeostrophic filter technique. It was possible to extract the quasigeostrophic signal from the available analyzed real data set.The results presented here are for the 11–12 March 1982, an example of so-called orographically induced lee cyclogenesis. Non-quasigeostrophic fields, calculated as a difference between observations and the quasigeostrophic fields, show significant magnitudes indicating the possible importance of non-quasigeostrophic processes. A dipole structure in the residual geopotential field was observed, similar to the results of numerical model experiments. Also, a strong upper-level non-quasigeostrophic divergence was found in the Alpine region 24 hours prior to lee cyclogenesis, lasting for 6–12 hours. On the other hand, quasigeostrophic results indicate only a local effect of mountain slopes, suggesting possibly a dominant role of the low-level blocking. A hypothetical scenario of Alpine lee cyclogenesis is proposed, based on results obtained here.With 14 Figures  相似文献   
130.
The mass balance of the Xiao (Lesser) Dongkemadi Glacier located in the Tanggula Mountains, of the central Qinghai‐Tibetan Plateau has been monitored since 1989. The results show that the mass balance of the glacier has recently shown a deficit trend, and that the glacial terminus was also retreating. Positive mass balance of the glacier was dominant during the period 1989–1993, and the accumulated mass balance reached 970 mm. However, negative mass balance of the glacier has occurred since 1994, except for the large positive mass balance year 1997. The mass balance was ? 701 mm in 1998, an extremely negative glacier mass balance year. The equilibrium line altitude showed a significant increasing trend. The mass balance of the glacier has changed from a significantly positive mass balance to a strongly negative mass balance since 1994. Meteorological data suggest that the rapid decrease in the mass balance is related to summer season warming. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号