首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
测绘学   1篇
大气科学   4篇
地球物理   16篇
地质学   15篇
海洋学   5篇
天文学   3篇
自然地理   8篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
21.
A sulfide chimney ore sampled from the flank of the active Tiger vent area in the Yonaguni Knoll IV hydrothermal field, south Okinawa trough, consists of anhydrite, pyrite, sphalerite, galena, chalcopyrite and bismuthinite. Electron microprobe analysis indicates that the chalcopyrite contains up to 2.4 wt% Sn, whereas bismuthinite contains up to 1.7 wt% Pt, 0.8 wt% Cu and 0.5 wt% Fe. The Sn‐rich chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite are the first reported occurrence of such minerals in an active submarine hydrothermal system. The results confirm that Sn enters the chalcopyrite as a solid solution towards stannite by the coupled substitution of Sn4+Fe2+ for Fe3+Fe3+, whereas Pt, Cu and Fe enter the bismuthinite structure as a solid solution during rapid nucleation. The fluid inclusions homogenization temperatures in anhydrite (220–310°C) and measured end‐member temperature of the vent fluids on‐site (325°C) indicate that Sn‐bearing chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite express the original composition of the minerals that precipitated as metastable phases at a temperature above 300°C. The result observed in this study implies that sulfides in ancient volcanogenic massive sulfide deposits have similar trace element distribution during nucleation but it is remobilised during diagenesis, metamorphism or supergene enrichment processes.  相似文献   
22.
Kohei  Sato Katsuo  Kase 《Island Arc》1996,5(3):216-228
Abstract The metallogeny of Japan can be grouped into four environments: (1) Paleozoic-Mesozoic stratiform Cu and Mn deposits within accretionary complexes, (2) Cretaceous-Paleogene post-accretionary deposits related to felsic magmatism in a continental-margin are environment, (3) Miocene epigenetic and syngenetic deposits related to felsic magmatism during back-arc opening, and (4) late Miocene-Quaternary volcanogenic deposits in an island-are environment. Group (1) deposits were a major source of Cu and Mn for the Japanese mining industry, and this style of mineralization is reviewed here. The stratiform Cu and Mn deposits were formed on the sea floor during the late Paleozoic to Mesozoic, and were subsequently accreted to active continental margins mainly in Jurassic to Cretaceous age. The Cu sulfide deposits, termed Besshi type, are classified into two subtypes: the Besshi-subtype deposit is related to basaltic volcanism, probably at a mid-oceanic ridge or rise; the Hitachi subtype is related to bimodal volcanism, probably in a back-arc or continental rift. Most of the Besshisubtype deposits occur in the Sanbagawa metamorphic belt, with some occurrences in weakly metamorphosed Jurassic and Cretaceous accretionary terrains. This subtype is divided into two groups: the sediment-barren group is hosted by basalt-chert sequences; whereas the sedimentcovered group is hosted by basalt-shale sequences. Both subtypes are characterized by S isotope trends similar to those of sea-floor sulfide deposits now forming at mid-oceanic ridges. The Hitachi-subtype deposits occur in late Paleozoic volcanic-sedimentary sequences and lack pelagic sediments. These deposits are characterized by association of sphalerite- and barite-rich ores. The Mn deposits occur mainly in Middle Jurassic to Early Cretaceous accretionary complexes containing abundant chert beds of Triassic to Jurassic age. Their locations are well separated from those of the Cu sulfide deposits. The Mn deposits are divided into two types: the Mn type, hosted by chert, and the Fe-Mn type, sandwiched between chert and basaltic volcanic rocks. The Mn-type ores appear to have deposited on the deep-sea floor further from the site of hydrothermal activity than the Fe-Mn type. Primary Mn precipitates may have been transformed to rhodochrosite and other Mn-minerals during diagenesis. Many of the Mn deposits were significantly metamorphosed during intrusion of Cretaceous granitoids, resulting in a very complex mineralogy.  相似文献   
23.
24.
To understand the initial reactions of granite in a CO2-saturated hydrothermal system, experiments were conducted using a batch-type autoclave over a temperature range of 100–350 °C at up to 250 bar and numerical computations of phase equilibria based on the experimental results were carried out. The experiments showed that the dissolution of granite and the deposition of secondary minerals were encouraged by the addition of CO2. Solution chemistry and examination of the granite’s surface texture suggested that its initial dissolution is characterized by the release of Na and Ca (from the dissolution of plagioclase) and that initial precipitation occurs by deposition of some secondary minerals on to plagioclase and/or biotite in the CO2-saturated system. However, the effect of CO2 was small at 350 °C owing to the low activity of H2CO3. According to EDX analysis and numerical phase equilibrium calculations, the secondary minerals formed might be kaolinite, muscovite, smectite and calcite. That is, the granite as a whole might have the potential to take-up dissolved CO2. The results suggest that the alteration of granite under CO2-saturated hydrothermal conditions has the potential to capture CO2 when it is injected at moderate temperatures (150–250 °C) into granite-hosted rock masses.  相似文献   
25.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   
26.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   
27.
Contamination status of brominated flame retardants (BFRs) and persistent organic pollutants (POPs) in blubber of finless porpoises (Neophocaena phocaenoides) stranded along the coasts of Seto Inland Sea and Omura Bay in Japan were investigated. Levels of PCBs, DDTs and CHLs were significantly higher than those of HCHs, HCB, PBDEs and HBCDs. Concentrations of PBDEs and HBCDs, as well as organochlorine compounds in males increased with body length (p<0.05). Among 14 PBDE congeners analyzed, BDE-47 was the predominant, which is similar to those generally reported in biota. PBDEs, HBCDs and PCBs showed no obvious temporal trend in concentrations during the study period, suggesting continuous environmental release of these chemicals. On the other hand, levels of DDT, CHLs and HCHs have decreased. Concentrations of PCBs in liver trematode infected individuals were significantly higher than those in not infected individuals, implying there could be a relationship between contaminant levels and parasitic infection.  相似文献   
28.
It has been established that East Asian summer monsoon intensity varies with Dansgaard–Oeschger cycles, suggesting a connection between the climates of East Asia and the North Atlantic on a millennial timescale. However, the dynamics of such a connection are still unsolved. Here we demonstrate that temporal changes in the provenance of aeolian dust in Japan Sea sediments, which we interpret to reflect changes in the westerly jet path over East Asia, exhibit variations in harmony with Dansgaard–Oeschger cycles. The dominance of dust with a Mongolian Gobi provenance during stadials suggests a westerly jet axis located to the south of the Himalaya–Tibetan Plateau throughout most of the year, whereas the co-dominance of dust from both the Taklimakan Desert and the Mongolian Gobi during interstadials suggests that the westerly jet axis jumped to the north of the Tibetan Plateau at latest in summer. As the shift of the westerly jet axis to the north of the Tibetan Plateau is closely related to the onset of the East Asian summer monsoon, changes of the westerly jet path apparently critically affect the teleconnection between the climates of Asia and North Atlantic on a millennial timescale.  相似文献   
29.
We measured the concentration of non-sea-salt sulfate () in the Dome Fuji shallow ice core (Antarctica) from the surface to 40 m depth with the aim of dating the core with reference to the record of volcanic eruptions. Three huge spikes related to large-scale volcanic eruptions were detected at depths of 12.5, 29.9, and 38.8 m, correlated to the eruptions of Tambora (AD 1815), Kuwae (AD 1452) and an unknown event (AD 1259), respectively. We identified another nine spikes related to accurately dated eruption events. The shallow ice core was dated from AD 1260 to AD 2001 based on these 12 eruption events and the assumption of constant annual snow accumulation in the periods between eruption events. The results yield a maximum correction of ∼20 years compared with the dating proposed in a previous study. The annual accumulation varied within ±∼15% of the average water equivalent value over the study period (25.5 mm).  相似文献   
30.
With a lack of United States federal policy to address climate change, cities, the private sector, and universities have shouldered much of the work to reduce carbon dioxide (CO2) and other greenhouse gas emissions. This study aims to determine how landcover characteristics influence the amount of carbon (C) sequestered and respired via biological processes, evaluating the role of land management on the overall C budget of an urban university. Boston University published a comprehensive Climate Action Plan in 2017 with the goal of achieving C neutrality by 2040. In this study, we digitized and discretized each of Boston University’s three urban campuses into landcover types, with C sequestration and respiration rates measured and scaled to provide a University-wide estimate of biogenic C fluxes within the broader context of total University emissions. Each of Boston University’s three highly urban campuses were net sources of biogenic C to the atmosphere. While trees were estimated to sequester 0.6 ± 0.2 kg C m−2 canopy cover year−1, mulch and lawn areas in 2018 emitted C at rates of 1.7 ± 0.4 kg C m−2 year−1 and 1.4 ± 0.4 kg C m−2 year−1, respectively. C uptake by tree canopy cover, which can spatially overlap lawn and mulched landcovers, was not large enough to offset biogenic emissions. The proportion of biogenic emissions to Scope 1 anthropogenic emissions on each campus varied from 0.5% to 2%, and depended primarily on the total anthropogenic emissions on each campus. Our study quantifies the role of urban landcover in local C budgets, offering insights on how landscaping management strategies—such as decreasing mulch application rates and expanding tree canopy extent—can assist universities in minimizing biogenic C emissions and even potentially creating a small biogenic C sink. Although biogenic C fluxes represent a small fraction of overall anthropogenic emissions on urban university campuses, these biogenic fluxes are under active management by the university and should be included in climate action plans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号