首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4879篇
  免费   941篇
  国内免费   1238篇
测绘学   496篇
大气科学   914篇
地球物理   1063篇
地质学   2512篇
海洋学   559篇
天文学   163篇
综合类   526篇
自然地理   825篇
  2024年   45篇
  2023年   116篇
  2022年   332篇
  2021年   372篇
  2020年   314篇
  2019年   369篇
  2018年   331篇
  2017年   311篇
  2016年   319篇
  2015年   285篇
  2014年   319篇
  2013年   334篇
  2012年   304篇
  2011年   272篇
  2010年   278篇
  2009年   260篇
  2008年   229篇
  2007年   239篇
  2006年   217篇
  2005年   179篇
  2004年   121篇
  2003年   143篇
  2002年   158篇
  2001年   120篇
  2000年   111篇
  1999年   170篇
  1998年   108篇
  1997年   100篇
  1996年   108篇
  1995年   83篇
  1994年   107篇
  1993年   63篇
  1992年   47篇
  1991年   35篇
  1990年   45篇
  1989年   23篇
  1988年   19篇
  1987年   13篇
  1986年   10篇
  1985年   10篇
  1984年   9篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1969年   2篇
  1958年   1篇
  1954年   1篇
排序方式: 共有7058条查询结果,搜索用时 109 毫秒
111.
本文较为详细地介绍了影响我国气候的重要因子——西风带的一些国内外最新研究动态,这些研究动态和研究成果将对山西省的气候研究起到积极作用。  相似文献   
112.
“山西省卫星农网”依托其省、市、县三级专门服务于农业的信息交流平台,能够及时地让农户了解国家和地方的农业政策及办事程序等,成为农户和政府间的信息桥梁,为广大农村提供准确的各类气象信息,有效地指导了农业生产,大大地减小了天气灾害损失。山西卫星农网作为山西省规模较大的农业专业网站,其影响和作用正逐步地发挥出来。  相似文献   
113.
The Kunlun fault is one of the largest strike-slip faults in northern Tibet, China. In this paper, we focus upon the Kusai Lake–Kunlun Pass segment of the fault to understand the geomorphic development of offset streams caused by repeated large seismic events, based on tectono-geomorphic analysis of high-resolution satellite remote sensing images combined with field studies. The results indicate that systematic left-lateral stream offsets appear at various scales across the fault zone: Lateral offsets of small gullies caused by the 2001 Mw 7.8 Kunlun earthquake vary typically from 3 m to 6 m, meanwhile streams with cumulative offsets of 10 m, 25–30 m, 50–70 m, 250–300 m and 750–1400 m have resulted from repeated large seismic events during the late Quaternary. An average slip rate of 10 ± 1 mm/year has been estimated from the lateral stream offsets and 14C ages of alluvial fan surfaces incised by the streams. A three-dimensional model showing tectono-geomorphic features along a left-lateral strike-slip fault is also presented. The Kusai Lake–Kunlun Pass segment provides an opportunity to understand the relationship between geomorphic features produced by individual large seismic events and long-term geomorphic development caused by repeated large seismic events along a major strike-slip fault.  相似文献   
114.
This paper describes the influence of siliceous and iron-rich calcic low-temperature hydrothermal fluids (LTHF) on the mineralogy and geochemistry of the Late Permian No. 11 Coal (anthracitic, Rr=2.85%) in the Dafang Coalfield in northwestern Guizhou Province, China. The No. 11 Coal has high contents of vein ankerite (10.2 vol.%) and vein quartz (11.4 vol.%), with formation temperatures of 85 and 180 °C, respectively, indicating that vein ankerite and vein quartz were derived from low-temperature calcic and siliceous hydrothermal fluids in two epigenetic episodes. The vein quartz appears to have formed earlier than vein ankerite did, and at least three distinct stages of ankerite formation with different Ca/Sr and Fe/Mn ratios were observed.The two types of mineral veins are sources of different suites of major and trace metals. Scanning electron microscope and sequential extraction studies show that, in addition to Fe, Mg, and Ca, vein ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn in the coal, and the contents of these five elements are as high as 0.09% and 74.0, 33.6, 185, and 289 μg/g, respectively. In contrast, vein quartz is the main carrier mineral for platinum-group elements (PGEs) Pd, Pt, and Ir in the coal, and the contents of Pd, Pt, and Ir are 1.57, 0.15, and 0.007 μg/g, respectively. Sequential extraction showed a high PGE content in the silicate fraction, up to 10.4 μg/g Pd, 1.23 μg/g Pt, and 0.05 μg/g Ir, respectively. It is concluded that the formation of ankerite and quartz and the anomalous enrichment of trace elements in the No. 11 Coal in the Dafang Coalfield, Guizhou, result from the influx of calcic and siliceous low-temperature hydrothermal fluids.  相似文献   
115.
Irregularly shaped (IRS) particles widely exist in many engineering and industrial fields. The macro physical and mechanical properties of the particle system are governed by the interaction between the particles in the system. The interaction between IRS particles is more complicated because of their complex geometric shape with extremely irregular and co‐existed concave and convex surfaces. These particles may interlock each other, making the sliding and friction of IRS particles more complex than that of particles with regular shape. In order to study the interaction of IRS particles more efficiently, a refined method of constructing discrete element model based on computed tomography scanning of IRS particles is proposed. Three parameters were introduced to control the accuracy and the number of packing spheres. Subsequently, the inertia tensor of the IRS particle model was optimized. Finally, laboratory and numerical open bottom cylinder tests were carried out to verify the refined modeling method. The influence of particle shape, particle position, and mesoscopic friction coefficient on the interaction of particles was also simulated. It is noteworthy that with the increase of mesoscopic friction coefficient, the fluidity of IRS particle assembly decreases, and intermittent limit equilibrium state may appear. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
116.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   
117.
Spatial information on soil properties is an important input to hydrological models. In current hydrological modelling practices, soil property information is often derived from soil category maps by the linking method in which a representative soil property value is linked to each soil polygon. Limited by the area‐class nature of soil category maps, the derived soil property variation is discontinuous and less detailed than high resolution digital terrain or remote sensing data. This research proposed dmSoil, a data‐mining‐based approach to derive continuous and spatially detailed soil property information from soil category maps. First, the soil–environment relationships are extracted through data mining of a soil map. The similarity of the soil at each location to different soil types in the soil map is then estimated using the mined relationships. Prediction of soil property values at each location is made by combining the similarities of the soil at that location to different soil types and the representative soil property values of these soil types. The new approach was applied in the Raffelson Watershed and Pleasant Valley in the Driftless Area of Wisconsin, United States to map soil A horizon texture (in both areas) and depth to soil C horizon (in Pleasant Valley). The property maps from the dmSoil approach capture the spatial gradation and details of soil properties better than those from the linking method. The new approach also shows consistent accuracy improvement at validation points. In addition to the improved performances, the inputs for the dmSoil approach are easy to prepare, and the approach itself is simple to deploy. It provides an effective way to derive better soil property information from soil category maps for hydrological modelling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
118.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
119.
For slope condition of ground surface, the asymmetrical deformation about the vertical center line and the horizontal center line of the tunnel cross section can be formed. A unified displacement function expressed by the Fourier series is presented to express the asymmetrical deformation of the tunnel cross section. Five basic deformation modes corresponding to the expansion order 2 are a complete deformation mode to reflect deformation behaviors of the tunnel cross section under slope boundary. Such this complete displacement mode is implemented into the complex variable solution for analytically predicting tunneling-induced ground deformation under slope boundary. All of these analytical solutions are verified by good agreements of the comparison between the analytical solutions and finite element method results. A parameter study is carried out to investigate the influence of deformation modes of the tunnel cross section, geometrical conditions of the tunnel and the slope angle, and “Buoyancy effect” on the displacement field. Finally, the proposed method is consistent with measured data of the Hejie tunnel in China qualitatively. The presented solution can provide a simplified indication for evaluating the ground deformation under slope condition of ground surface.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号