首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   7篇
  国内免费   2篇
大气科学   5篇
地球物理   47篇
地质学   35篇
海洋学   23篇
天文学   51篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   13篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   6篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1962年   1篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
41.
Shimojo  Masumi  Shibata  Kazunari  Harvey  Karen L. 《Solar physics》1998,178(2):379-392
From a list of X-ray jets made by Shimojo et al. (1996), we selected events for which there were magnetic field data from NSO/Kitt Peak. Using co-aligned SXT and magnetograms, we examined the magnetic field properties of X-ray jets. We found that 8% of the jets studied occurred at a single pole (SP), 12% at a bipole (BP), 24% in a mixed polarity (MP) and 48% in a satellite polarity (ST). If the satellite polarity region is the same as the mixed polarity region, 72% of the jets occurred at the (general) mixed polarity region.We also investigated the magnetic evolution of jet-producing areas in active regions NOAA 7067, NOAA 7270, and NOAA 7858. It is found that X-ray jets favored regions of evolving magnetic flux (increasing or decreasing).  相似文献   
42.
A sustained dynamic inflow perturbation and bar–floodplain conversion are considered crucial to dynamic meandering. Past experiments, one-dimensional modelling and linear theory have demonstrated that the initiation and persistence of dynamic meandering require a periodic transverse motion of the inflow. However, it remains unknown whether the period of the inflow perturbation affects self-formed meander dynamics. Here, we numerically study the effect of the inflow perturbation period on the development and meander dynamics of a chute-cutoff-dominated river, which requires two-dimensional modelling with vegetation forming floodplain on bars. We extended the morphodynamic model Nays2D with growth and mortality rules of vegetation to allow for meandering. We tested the effect of a transversely migrating inflow boundary by varying the perturbation period between runs over an order of magnitude around typical modelled meander periods. Following the cutoff cascade after initial meander formation from a straight channel, all runs with sufficient vegetation show series of growing meanders terminated by chute cutoffs. This generates an intricate channel belt topography with point bar complexes truncated by chutes, oxbow lakes, and scroll-bar-related vegetation age patterns. The sinuosity, braiding index and meander period, which emerge from the inherent biomorphological feedback loops, are unrelated to the inflow perturbation period, although the spin-up to dynamic equilibrium takes a longer time and distance for weak and absent inflow perturbations. This explains why, in previous experimental studies, dynamic meandering was only accomplished with a sustained upstream perturbation in flumes that were short relative to the meander wavelength. Our modelling of self-formed meander patterns is evidence that scroll-bar-dominated and chute-cutoff-dominated meanders develop from downstream convecting instabilities. This insight extends to many more fluvial, estuarine and coastal systems in morphological models and experiments, which require sustained dynamic perturbations to form complex patterns and develop natural dynamics. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
43.
Biological soil crusts(BSCs) play important roles in the carbon(C) balance in arid regions. Net C balance of BSCs is strongly dependent on rainfall and consequent activation of microbes in the BSCs. The compensation-rainfall size for BSCs(the minimum rainfall amount for a positive net C balance) is assumed to be different with BSCs of different developmental stages. A field experiment with simulated rainfall amount(SRA) of 0, 1, 5, 10, 20, and 40 mm was conducted to examine the C fluxes and compensation-rainfall size of BSCs in different parts of fixed dunes in the ecotone between the Badain Jaran Desert and the Minqin Oasis. We found algae-lichen crust on the interdunes and crest, algae crust on the leeward side, and lichen-moss crust on the windward. Even a small rainfall(1 mm) can activate both photosynthesis and respiration of all types of BSCs. The gross ecosystem production, ecosystem respiration, and net ecosystem exchange were significantly affected by SRA, hours after the simulated rainfall, position on a dune, and their interactions. The rapid activation of photosynthesis provides a C source and therefore could be responsible for the increase of C efflux after each rewetting. C-uptake and-emission capacity of all the BSCs positively correlated with rainfall size, with the lowest C fluxes on the leeward side. The compensation rainfall for a net C uptake was 3.80, 15.54, 8.62, and 1.88 mm for BSCs on the interdunes, the leeward side, the crest, and the windward side, respectively. The whole dune started to show a net C uptake with an SRA of 5 mm and maximized with an SRA of about 30 mm. The compensation-rainfall size is negatively correlated with chlorophyll content. Our results suggest that BSCs will be favored in terms of C balance, and sand dune stabilization could be sustained with an increasing frequency of 5-10 mm rainfall events in the desert-oasis transitional zone.-  相似文献   
44.
A mud volcano LUSI initiated its eruption on 29 May 2006, adjacent to a hydrocarbon exploration well in East Java. Ground subsidence in the vicinity of the LUSI eruptive vent was well recorded by a Synthetic Aperture Radar (SAR) PALSAR onboard the Japanese ALOS satellite. We apply an Interferometric SAR (InSAR) technique on ten PALSAR data scenes, acquired between 19 May 2006 and 21 May 2007, in order to obtain continuous maps of ground displacements around LUSI. Although the displacements in the area closest to the eruptive vent (spatial extension of about 1.5 km) are not detectable because of the erupted mud, all the processed interferograms indicate subsidence in an ellipsoidal area of approximately 4 km (north–south) × 3 km (east–west), centered at the main eruptive vent. In particular, interferograms spanning the first four months until 4 Oct. 2006 and the subsequent 46 days between 4 Oct. 2006 and 19 Nov. 2006 show at least about 70 cm and 80 cm of displacements away from the satellite, respectively. Possible causes of the subsidence, i.e., 1) loading effect of the erupted mud, 2) creation of a cylindrical mud conduit, and 3) pressure decrease and depletion of materials at depth, are investigated. The effects of the first two causes are found to be insufficient to explain the total amount of subsidence observed in the first six months. The third possibility is quantitatively examined using a boundary element approach by modeling the source of deformation as a deflating oblate spheroid. The spheroid is estimated to lie at depths of a few hundred to a thousand meters. The estimated depths are significantly shallower than determined from analyses of erupted mud samples; the difference is explained by presence of significant amount of inelastic deformation including compaction and downward transfer of material.  相似文献   
45.
A method for solving the force-free surface problem for the pulsar magnetosphere is outlined. The given formulation is extended to an oblique rotator problem. Since we solve equation subject to the boundary values—i.e., the boundary element method (BEM) developed in Paper I is used—we can directly determine the force-free surface. Another merit of this method rests in the fact that we only use a two-dimensional grid, in spite of the problem being three-dimensional. A numerical calculation has been performed to confirm the solution by the particle method (Krause-Polstorff and Michel, 1985).  相似文献   
46.
Takeshi  Tsuji  Yasuyuki  Nakamura  Hidekazu  Tokuyama  Millard F.  Coffin  Keita  Koda 《Island Arc》2007,16(3):361-373
Abstract   To show the structure of oceanic crust and Moho around the eastern Ogasawara Plateau, we have analyzed industry-standard two-dimensional multichannel seismic reflection data. To obtain improved velocity models, phase information of seismic signals was used for velocity analysis and velocity models for oceanic crust above Moho were determined. We apply this velocity analysis technique to seismic reflection data around the eastern Ogasawara Plateau, with the result of clear images of structures within oceanic crust and Moho. South of the Ogasawara Plateau, Moho deepens proximal to the Plateau. Moho distal to the Plateau is ca 7 km below sea floor (bsf), whereas it is ca 10 km bsf near the Plateau. The characters of oceanic crust and Moho differ significantly north and south of the Plateau. To the north, the structure of oceanic crust is ambiguous, the sea floor is shallower and less smooth, and Moho is discontinuous. To the south, structures within oceanic crust and Moho are imaged clearly, and the sea floor is deeper. A strong Moho reflection south of the Plateau might represent a sharp boundary between layered gabbro and peridotite. However, discontinuous Moho reflections north of the Plateau might represent rough topography because of intensive magmatism or a gradual downward increase in velocity within a thick Moho transition zone. A fracture zone north of the Plateau also appears to separate oceanic crust and Moho of different characters, suggesting vigorous magmatism between the Plateau and the fracture zone, and that the Ogasawara Plateau and the fracture zone influenced the genesis of oceanic crust and upper mantle. Differences in acoustic characteristics to the north and south of the Plateau are apparent in profiles illuminated by seismic attributes.  相似文献   
47.
48.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   
49.
The C factor, representing the impact of plant and ground cover on soil loss, is one of the important factors of the Modified Universal Soil Loss Equation (MUSLE) in the Soil and Water Assessment Tool (SWAT) to model sediment yield. The daily update of C factors in SWAT was originally determined by land use types and plant growth cycles. This does not reflect the spatial variation of C values that exists within a large land use area. We present a new approach to integrate remotely sensed C factors into SWAT for highlighting the effect of detailed vegetative cover data on soil erosion and sediment yield. First, the C factor was estimated using the abundance of ground components extracted from remote sensing images. Then, the gridding data of the C factor were aggregated to hydrological response units (HRUs), instead of to land use units of SWAT. In the end, the C factor values in HRUs were integrated into SWAT to predict sediment yield by modifying the ysed subroutine. This substitution work not only increases the spatial variation of the C factor in SWAT, but also makes it possible to utilize other sources of C databases rather than those from the United States. The demonstration in the Dage basin shows that the modified SWAT produces reasonable results in water flow simulation and sediment yield prediction using remotely sensed C values. The Nash–Sutcliffe efficiency coefficient (ENS) and R2 for surface runoff range from 0·69 to 0·77 and 0·73 to 0·87, respectively. The coefficients ENS and R2 for sediment yield were generally above 0·70 and 0·60, respectively. The soil erosion risk map based on sediment yield prediction at the HRU level illustrates instructive details on spatial distribution of soil loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
The goal of this study was to test hollow‐fiber ultrafiltration as a method for concentrating in situ bacteria and viruses in groundwater samples. Water samples from nine wells tapping a shallow sandy aquifer in a densely populated village in Bangladesh were reduced in volume approximately 400‐fold using ultrafiltration. Culture‐based assays for total coliforms and Escherichia coli, as well as molecular‐based assays for E. coli, Bacteroides, and adenovirus, were used as microbial markers before and after ultrafiltration to evaluate performance. Ultrafiltration increased the concentration of the microbial markers in 99% of cases. However, concentration factors (CF = post‐filtration concentration/pre‐filtration concentration) for each marker calculated from geometric means ranged from 52 to 1018 compared to the expected value of 400. The efficiency was difficult to quantify because concentrations of some of the markers, especially E. coli and total coliforms, in the well water (WW) collected before ultrafiltration varied by several orders of magnitude during the period of sampling. The potential influence of colloidal iron oxide precipitates in the groundwater was tested by adding EDTA to the pre‐filtration water in half of the samples to prevent the formation of precipitates. The use of EDTA had no significant effect on the measurement of culturable or molecular markers across the 0.5 to 10 mg/L range of dissolved Fe2+ concentrations observed in the groundwater, indicating that colloidal iron did not hinder or enhance recovery or detection of the microbial markers. Ultrafiltration appears to be effective for concentrating microorganisms in environmental water samples, but additional research is needed to quantify losses during filtration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号