首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
  国内免费   1篇
地球物理   19篇
地质学   14篇
海洋学   12篇
天文学   3篇
自然地理   4篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有52条查询结果,搜索用时 140 毫秒
11.
12.
13.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   
14.
A number of microstructural features indicate a difference in the dominant deformation mechanism between the higher temperature Ryoke and the lower temperature Sambagawa and Shimanto metamorphic belts of Japan. The microstructures of metacherts containing deformed radiolaria are divided into two types: in both the Sambagawa and Shimanto belts the quartz grains are tabular while in the Ryoke belt they are equiaxed. TEM studies of these metacherts revealed that the tabular grains contain abundant subboundaries consisting of large numbers of network dislocations and bowe-out dislocations, while the equiaxed grains contain no subboundaries and have low densities of dislocations which are not bowed-out. There is a corresponding difference in the textures (lattice preferred orientation of quartz): the Ryoke metacherts display randomly distributed c-axes of quartz, while the Sambagawa and Shimanto metacherts show conspicuous crossed girdle patterns with some asymmetry. There is a third difference between these regions: in the metacherts of the Ryoke metamorphic belt, the strain magnitudes determined from deformed radiolaria increase with increasing volume fraction of mica in the same metamorphic P and T conditions, while in the Sambagawa and the Shimanto metamorphic cherts the strain magnitudes decrease with increasing the mica fraction.These microstructures, textures, and rheological behaviours of quartz-mica rocks suggest a change of deformation mechanism between the lower temperature Sambagawa and Shimanto, and the higher temperature Ryoke metamorphic belts. Since random fabrics of c-axes of quartz are inconsistent with lattice rotation due to dislocation glide, the Ryoke metacherts may have deformed by pressure-solution.  相似文献   
15.
Yasuto  Itoh  Toshiyasu  Miyazaki  Seiji  Nishizaki 《Island Arc》2007,16(3):457-464
Abstract   Neotectonic crustal deformation in central Japan near a triple-junction of plates is investigated on the basis of paleomagnetic data. The progressive thermal demagnetization test isolated characteristic remanent magnetization from 18 sites of the early Quaternary Eboshidake volcanic rocks erupted around the termination of active strike-slip faults. The site-mean directions show considerably large scatter in declinations, and easterly deflection in average (Dm = −161.7°). On the basis of inclination statistics, measured inclinations (Im = −48.9°, δI = 6.6°) are concordant with an expected value from latitude of the study area. Because the sampling was planned to cover a wide stratigraphic range and eliminate the effect of geomagnetic secular variation, an easterly deflection is attributed to clockwise rotation around vertical axis. Together with previous paleomagnetic data, the present study indicates that clockwise-rotated areas in central Japan are aligned on a northeast–southwest recent shear zone delineated through geodetic survey. Deflection and scatter of paleomagnetic declinations of the Eboshidake volcanic rocks are much greater than those extrapolated from a recent strain rate, and might be explained by complicated motion anticipated at fault terminations and/or enhanced crustal rotation under elevated temperatures around a Quaternary volcanic province.  相似文献   
16.
17.
Variations in fossil diatom assemblages and their relationship with global and Indian monsoon climate changes for the last 600,000 yr were investigated using a core of ancient lake (Paleo-Kathmandu Lake) sediments drilled at the Kathmandu Basin, Nepal Himalaya. Chronological scales of the core were constructed by tuning pollen wet and dry index records to the SPECMAP δ18O stack record. Examinations of biogenic silica contents and fossil diatom assemblages revealed that variations in productivity and compositions of diatom assemblages were closely linked with global and Indian monsoon climate changes on glacial and interglacial time scales. When summer monsoonal rainfall increased during interglacials (interstadials), diatom productivity increased because of increased inputs of terrestrial nutrients into the lake. When summer monsoonal rainfall reduced and/or winter monsoonal aridification enhanced during glacials (stadials), productivity of the diatoms decreased and lake-level falling brought about changes in compositions of diatom assemblages. Monospecific assemblages by unique Cyclotella kathmanduensis and Puncticulata versiformis appeared during about 590 to 390 ka. This might be attributed to evolutionary fine-tuning of diatom assemblages to specific lake environmental conditions. Additionally, low-amplitude precessional variations in monsoon climate and less lake-level changes may have also allowed both species to dominate over the long periods.  相似文献   
18.
Late Cretaceous to Paleogene tectonic episodes around the eastern Eurasian margin are described utilizing one-dimensional (1D) basin modeling technique on the basis of organic maturation; vitrinite reflectance and Tmax parameter values of the Rock-Eval pyrolysis. Fine-grained marine sediment of the Yezo Supergroup in central Hokkaido is one of the most extensive Cretaceous constituents along the plate margin. To evaluate organic maturation within the Yezo Supergroup, a surface section (Hakkin-zawa) and a deep borehole (MITI Yubari) were selected, from which quite different maturation trends were obtained. Notably low and constant maturation was suggested throughout the thick Hakkin-zawa section, and it was confirmed on the basis of various biomarker analyses. It requires anomalously rapid burial, probably related to thrust-stacking or large-scale slumping, followed by prompt tilting/exhumation event. In sharp contrast, Late Cretaceous strata in the MITI Yubari do not indicate coeval tectonic disturbances in a short period. A wider view of the ancient convergent margin suggests that deformation of the forearc propagated westward during the Cretaceous. High maturation levels in the uppermost thrust sheet around the MITI Yubari are optimized in 1D geochemical modeling on the assumption that a thick missing Paleogene unit has been eroded out as a result of thrust-forming contraction scheme emerged during the Neogene. A similar Cenozoic burial pattern is adopted for the once tilted and exhumed Hakkin-zawa section in order to match the present maturation levels. Although such an active subsidence of a ‘forearc’ is generally interpreted as an effect of the subduction erosion, heavy mineral composition of the shallow marine to fluvial Paleogene implies uplift and exhumation of ultramafic rocks to the east (trench-side). Thus the confined basin-formation in central Hokkaido is to be understood in a different tectonic framework that may reflect transcurrent motions on the plate margin.  相似文献   
19.
Cenozoic basin-forming processes in northwestern Kyushu were studied on the basis of geological and geophysical data. Gravity anomaly analysis delineated four sedimentary basins in the study area: Goto-nada, Nishisonogi, Amakusa-nada, and Shimabara. Borehole stratigraphy and reflection seismic interpretation suggest that the Goto-nada Basin was subdivided into the Paleogene and Plio-Pleistocene depocenters (Goto-nada 1 and 2). In the Paleogene, Amakusa-nada Basin was rapidly subsiding together with the Shimabara Basin as part of a large graben. Goto-nada 1 and Nishisonogi basins belonged to another depositional area. After stagnant subsidence stage in the early Miocene, the study area became a site of basaltic activity (since 10 Ma) and vigorous subsidence in the Plio-Pleistocene. Goto-nada 2 Basin is accompanied with numerous east–west active faults, and separated from the Amakusa-nada Basin by a northeast– southwest basement high, Nomo Ridge. Plio-Pleistocene subsidence of the Amakusa-nada Basin is related with low-angle normal faulting on the eastern flank of the Nomo Ridge. Shimabara Basin is a composite volcano-tectonic depression which is studded by east–west faults. Focal mechanism on active faults suggests transtensional stress regime in the study area.  相似文献   
20.
在近些年的野外调查中,我们在安宁河、则木河2断裂带的过渡段(礼州至西昌之间)及其附近的3个场地发现了未知年代的地表破裂。通过分析这些地表破裂的特征以及在本区历史地震重破坏区中的位置,我们认为位于杨福山村以北与大坪子村以西2个场地的破裂应是1536年大地震地表破裂带的遗迹。这不仅反映了1536年大地震破裂带的南段沿安宁河与则木河断裂带的过渡段产生,而且反映了该破裂带的南端很可能到达了或者很接近于西昌。位于西昌略北李金堡村以东的破裂应属于1850年大地震地表破裂带的遗迹,它进一步证明了1850年大地震地表破裂带的西北端可能到达西昌以北至少数千米处。因而,由文中的证据可推断西昌附近的主干活动断裂在1536年和1850年大地震时均发生了破裂  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号