首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41997篇
  免费   547篇
  国内免费   231篇
测绘学   900篇
大气科学   2084篇
地球物理   8857篇
地质学   16322篇
海洋学   3710篇
天文学   9514篇
综合类   128篇
自然地理   1260篇
  2022年   527篇
  2021年   801篇
  2020年   849篇
  2019年   899篇
  2018年   1932篇
  2017年   1757篇
  2016年   1954篇
  2015年   853篇
  2014年   1666篇
  2013年   2367篇
  2012年   1900篇
  2011年   2119篇
  2010年   2000篇
  2009年   2212篇
  2008年   1935篇
  2007年   2104篇
  2006年   1862篇
  2005年   1000篇
  2004年   915篇
  2003年   919篇
  2002年   820篇
  2001年   839篇
  2000年   714篇
  1999年   466篇
  1998年   512篇
  1997年   537篇
  1996年   376篇
  1995年   421篇
  1994年   412篇
  1993年   317篇
  1992年   326篇
  1991年   323篇
  1990年   382篇
  1989年   307篇
  1988年   288篇
  1987年   291篇
  1986年   226篇
  1985年   334篇
  1984年   329篇
  1983年   335篇
  1982年   314篇
  1981年   280篇
  1980年   296篇
  1979年   237篇
  1978年   274篇
  1977年   236篇
  1976年   198篇
  1975年   216篇
  1974年   195篇
  1973年   241篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
991.
Measurements of the linear polarization of individual pulses at 40, 60, and 103 MHz are presented for ten pulsars. The degree and position angle of a linear polarization were measured with a temporal resolution of 1–7 ms, and the longitudinal distributions of these parameters were constructed for each pulsar at one or more of these frequencies. These are the first such measurements for pulsars B0031-07, B0320 + 39, B0628-28, and B2217 + 47. Apart from B0628-28, all the pulsars are characterized by the simultaneous presence of orthogonal polarization modes in at least one component of the integral profile. The secondary polarization mode increases at frequencies ≤100 MHz for pulsars whose integrated pulses contain pairs of conal components (B0031-07, B0329 + 54, B0834 + 06, B1133 + 16, B2020 + 28). This is manifested both as an expansion of the longitudinal range where the secondary polarization mode is observed and an increase in its contribution to the emission at a given longitude. New data confirming the dependence of the linear polarization of individual pulses on the intensity and mode of the pulsar emission have been obtained.  相似文献   
992.
BV RI data are presented for the majority of steep-spectrum objects in the RC catalog with m R <23.5m. Previously developed programs are applied to these data to estimate the redshifts and ages of the stellar systems of the host galaxies. Applying this program to the color data (BV RI JHK) for distant radio galaxies with spectroscopic redshifts indicates that this approach provides accurate estimates of the redshifts of such radio galaxies, close to those obtained using field galaxies (~20%). The age estimates are much less trustworthy, but a lower limit to the ages of objects that are not very distant (z<1.5) can be determined with certainty. We have identi fied several galaxies whose formal ages exceed the age of the Universe at the corresponding z in simple Cold Dark Matter models for the Universe. The possibility of using such objects to elucidate the role of “dark energy” is discussed. This paradox disappears in models with cosmological constants (Λ terms) equal to 0.6–0.8.  相似文献   
993.
The article discusses regularities in the distribution of mud volcanoes and characterizes most important mud volcanic provinces of the world. A new morphogenetic classification of mud volcanoes substantiated by results of their study in the Crimean–Caucasian and West Turkmenian regions is proposed.  相似文献   
994.
Mineral assemblages in the blueschist-facies metapelites fromthe Ile de Groix (Armorican Massif, France) permit the distinctionof two main units. The Upper Unit is characterized by: (1) highmodal proportions of garnet; (2) larger grain size; (3) therarity of graphite-bearing layers; (4) a single, although composite,foliation S1. A Lower Unit is defined by: (1) low modal proportionsof garnet; (2) smaller grain size; (3) an abundance of graphite-bearinglayers; (4) a pervasive crenulation cleavage S2. In the UpperUnit, coexisting garnet and chloritoid are more magnesian andless manganiferous than in the Lower Unit. The differences inmodal proportions and chemistry of coexisting minerals reflectdifferent P–T conditions. The P–T history of theblueschist-facies metapelites is estimated using a simplifiedpetrogenetic grid in the NFMASH system and thermodynamic calculations,which suggest peak P–T conditions at about P = 16–18kbar, T = 450–500°C and P = 14–16 kbar, T =400–450°C in the Upper and Lower Units, respectively.Peak P–T conditions were followed by a nearly isothermaldecompression for both units at slightly different temperatures(of the order of 50°C). The contact between the two units,i.e. the garnet isograd, is interpreted as a greenschist-faciesductile thrust. Thrusting of the higher-grade unit, i.e. theUpper Unit, over the Lower Unit occurred after the high-pressureevent, i.e. during the exhumation of both units. The observedsuperposition of higher-grade rocks over lower-grade rocks arguesagainst models where the exhumation history is entirely controlledby crustal-scale vertical shortening (i.e. extension). KEY WORDS: Armorican Massif; blueschist facies; Ile de Groix; metapelites; PT path; garnet isograd  相似文献   
995.
The Trypali carbonate unit (Upper Triassic), which crops out mainly in central‐western Crete, occurs between the parautochthonous series (Plattenkalk or Talea Ori‐Ida series, e.g. metamorphic Ionian series) and the Tripolis nappe (comprising the Tripolis carbonate series and including a basal Phyllite–Quartzite unit). It consists of interbedded dolomitic layers, represented principally by algally laminated peloidal mudstones, foraminiferal, peloidal and ooidal grainstones, as well as by fine‐grained detrital carbonate layers, in which coarse baroque dolomite crystals and dolomite nodules are dispersed. Baroque dolomite is present as pseudomorphs after evaporite crystals (nodules and rosettes), which grew penecontemporaneously by displacement and/or replacement of the host sediments (sabkha diagenesis). However, portions of the evaporites show evidence of resedimentation. Pre‐existing evaporites predominantly consisted of skeletal halite crystals that formed from fragmentation of pyramidal‐shaped hoppers, as well as of anhydrite nodules and rosettes (salt crusts). All microfacies are characteristic of peritidal depositional environments, such as sabkhas, tidal flats, shallow hypersaline lagoons, tidal bars and/or tidal channels. Along most horizons, the Trypali unit is strongly brecciated. These breccias are of solution‐collapse origin, forming after the removal of evaporite beds. Evaporite‐related diagenetic fabrics show that there was extensive dissolution and replacement of pre‐existing evaporites, which resulted in solution‐collapse of the carbonate beds. Evaporite replacement fabrics, including calcitized and silicified evaporite crystals, are present in cements in the carbonate breccias. Brecciation was a multistage process; it started in the Triassic, but was most active in the Tertiary, in association with uplift and ground‐water flow (telogenetic alteration). During late diagenesis, in zones of intense evaporite leaching and brecciation, solution‐collapse breccias were transformed to rauhwackes. The Trypali carbonate breccias (Trypali unit) are lithologically and texturally similar to the Triassic solution‐collapse breccias of the Ionian zone (continental Greece). The evaporites probably represent a major diapiric injection along the base of the parautochthonous series (metamorphic Ionian series) and also along the overthrust surface separating the parautochthonous series from the Tripolis nappe (Phyllite–Quartzite and Tripolis series). The injected evaporites were subsequently transformed into solution‐collapse breccias.  相似文献   
996.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
997.
The sulfur, paraffin, resin and asphaltene contents of some 6570 Cenozoic, Mesozoic and Paleozoic Eurasian oils were analysed statistically in terms of reservoir age and depth. The database includes all principal oil-bearing basins from 60 Eurasian countries. The results of the studies of the relationships between the distribution of oils with different sulfur, paraffin, resin and asphaltene contents and the reservoir age and depth are presented. Predictive trends are established allowing polynomial predictions of average properties.  相似文献   
998.
Petrologic and geochronological work was carried out on a roadside outcrop of amphibolite facies orthogneisses near São Lourenço da Serra, about 50 km southwest of São Paulo City. These orthogneisses belong to the Embu Complex, within the Neoproterozoic Brasiliano Orogenic Cycle mobile belts of SE Brazil. The outcrop consists of predominantly foliated biotite tonalites and granodiorites, which were cut by granitic veins and pegmatites prior to final deformation. SHRIMP U/Pb measurements on zircons from one granodioritic–tonalitic gneiss indicate magmatic crystallization of the protolith at 811±13 Ma (MSWD=1.0). Zircons with dates of ca. 2000 and ca. 1000 Ma in this rock are interpreted as inherited from older crust. One zircon analyzed from the gneiss and three zircons from a discordant pegmatitic vein indicate an event at 650–700 Ma, perhaps related to the intrusion of the pegmatites. A regression of Rb–Sr whole rock data for four biotite gneisses yielded an imperfect isochron, giving an apparent age of 821±68 Ma and an elevated initial 87Sr/86Sr ratio of 0.719±0.005. The elevated initial 87Sr/86Sr ratio and the inherited zircons indicate involvement of older crust in the genesis of the gneisses. Rb–Sr feldspar and whole rock pairs yield ca. 560 Ma tielines, giving the time of final cooling below 300–350 °C, and the cessation of medium-grade metamorphism and ductile deformation. These results document a series of tectono-thermal events spanning 250 million years during the Brasiliano Orogenic Cycle. They relate to ca. 800 Ma magmatic arc activity and later allochthonous terrane assembly during closure of the Adamastor Ocean, resulting in the accretion of Western Gondwana.  相似文献   
999.
1000.
 Amphiboles were synthesized from bulk compositions prepared along the join Ca1.8Mg5.2Si8O22(OH)2–Ca1.8Mg3Ga4Si6O22(OH)2 hydrothermally at 750–850 °C and 1.0–1.8 GPa, and along the join Ca2Mg5Si8O22F2–Ca2Mg3Ga4Si6O22F2, anhydrously at 1000 °C and 0.7 GPa to document how closely the tschermak-type substitution is obeyed in these analogues of aluminous amphiboles. Electron-microprobe analyses and Rietveld X-ray diffraction structure refinements were performed to determine cation site occupancies. The extent of Ga substitution was found to be limited in both joins, but with the fluorine series having about twice the Ga content (0.6 atoms per formula unit, apfu) of the hydroxyl-series amphiboles (0.3 apfu). The tschermak-type substitution was followed very closely in the hydroxyl series with essentially equal partitioning of Ga between tetrahedral and octahedral sites. The fluorine-series amphiboles deviated significantly from the tschermak-type substitution and, instead, appeared to follow a substitution that is close to a Ca-pargasite substitution of the type: [6]Ga3++2[4]Ga3++1/2[A] Ca2+ = [6]Mg2++2[4]Si4++1/2[A]□. Infrared spectroscopy revealed an inverse correlation between the intensity of the OH-stretching bands and the Ga content for the hydroxyl- and fluorine-series amphiboles. The direct correlation between the Ga and F content and inverse relationship between the Ga and OH content may be a general phenomenon present in other minerals and suggests, for example, that high F contents in titanite are controlled by the Al content of the host rock and that there may be similar direct Al–F correlations in tschermakitic amphiboles. Evidence for the possibility that Al (Ga) might substitute onto only a subset of the tetrahedral sites in tschermakitic amphiboles was sought but not observed in this study. Received: 5 March 2001 / Accepted: 31 July 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号