首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26010篇
  免费   503篇
  国内免费   1365篇
测绘学   1536篇
大气科学   2289篇
地球物理   4857篇
地质学   12467篇
海洋学   1302篇
天文学   1714篇
综合类   2303篇
自然地理   1410篇
  2024年   7篇
  2023年   36篇
  2022年   58篇
  2021年   85篇
  2020年   83篇
  2019年   91篇
  2018年   4838篇
  2017年   4109篇
  2016年   2667篇
  2015年   324篇
  2014年   184篇
  2013年   129篇
  2012年   1086篇
  2011年   2848篇
  2010年   2102篇
  2009年   2407篇
  2008年   2007篇
  2007年   2473篇
  2006年   144篇
  2005年   269篇
  2004年   488篇
  2003年   466篇
  2002年   306篇
  2001年   123篇
  2000年   111篇
  1999年   93篇
  1998年   57篇
  1997年   50篇
  1996年   41篇
  1995年   16篇
  1994年   30篇
  1993年   25篇
  1992年   14篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   8篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   23篇
  1980年   20篇
  1979年   5篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The climate–population relationship has long been conceived. Although the topic has been repeatedly investigated, most of the related works are Eurocentric or qualitative. Consequently, the relationship between climate and population remains ambiguous. In this study, fine-grained temperature reconstructions and historical population data sets have been employed to statistically test a hypothesized relationship between temperature change and population growth (i.e., cooling associated with below average population growth) in China over the past millennium. The important results were: (1) Long-term temperature change significantly determined the population growth dynamics of China. However, spatial variation existed, whilst population growth in Central China was shown to be responsive to both long- and short-term temperature changes; in marginal areas, population growth was only sensitive to short-term temperature fluctuations. (2) Temporally, the temperature–population relationship was obscured in some periods, which was attributable to the factors of drought and social buffers. In summary, a temperature–population relationship was mediated by geographic factors, the aridity threshold, and social factors. Given the upcoming threat posed by climate change to human societies, this study seeks to improve our knowledge and understanding of the climate–society relationship.  相似文献   
52.
Land surface temperature shaped by urban fractions in megacity region   总被引:1,自引:0,他引:1  
The influence of spatial scales on surface fluxes is an interesting but not fully investigated question. This paper presents an analysis on the influence of spatial scales on surface fluxes in the north Tibetan Plateau based on eddy covariance (EC) and large aperture scintillometer (LAS) data at site Nagqu/BJ, combined with the land surface temperature (LST) and normalized difference vegetation index (NDVI) of moderate-resolution imaging spectroradiometer (MODIS). The analysis shows that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with sensible heat fluxes calculated with EC data (H_EC) in the rain and dry seasons. The difference in their footprints due to the wind direction is an important reason for the differences in H_EC and H_LAS. The H_LAS are statistically more consistent with H_EC when their footprints overlap than when their footprints do not. A detailed analysis on H_EC and H_LAS changes with net radiation and wind direction in rain and dry season indicates that the spatial heterogeneity in net radiation created by clouds contributes greatly to the differences in H_EC and H_LAS in short-term variations. A significant relationship between the difference in footprint-weighted averages of LST and difference in H_EC and H_LAS suggests that the spatial heterogeneity in LST at two spatial scales is a reason for the differences in H_EC and H_LAS and that LST has a positive correlation with the differences in H_EC and H_LAS. A significant relationship between the footprint-weighted averages of NDVI and the ratio of sensible heat fluxes at two spatial scales to net radiation (H/Rn) in the rain season supports the analysis that the spatial heterogeneity in canopy at two spatial scales is another reason for differences in H_EC and H_LAS and that canopy has a negative correlation with (H/Rn). An analysis on the influence of the difference in aerodynamic roughness lengths at two spatial scales on sensible heat fluxes shows that the influence is greater in the dry season and smaller in the rain season because the ratio of z0m_LAS to z0m_EC is big in the dry season and is close to 1.0 in the rain season. This study on spatial scales on surface fluxes in the Tibetan Plateau will be helpful in analyzing and understanding its influence on climate.  相似文献   
53.
UV attenuation in the cloudy atmosphere   总被引:1,自引:0,他引:1  
Ultraviolet (UV) energy absorption plays a very important role in the Earth–atmosphere system. Based on observational data for Beijing, we suggest that some atmospheric constituents utilize or transfer UV energy in chemical and photochemical (C&P) reactions, in addition to those which absorb UV energy directly. These constituents are primarily volatile organic compounds (VOCs) emitted from both vegetative and anthropogenic sources. The total UV energy loss in the cloudy atmosphere for Beijing in 1990 was 78.9 Wm−2. This attenuation was caused by ozone (48.3 Wm−2), other compounds in the atmosphere (26.6 Wm−2) and a scattering factor (4.0 Wm−2). Our results for a cloudy atmosphere in the Beijing area show that the absorption due to these other compounds occurs largely through the mediation of water vapor. This fraction of energy loss has not been fully accounted for in previous models. Observations and previous models results suggest that 1) a cloudy atmosphere absorbs 25∼30 Wm−2 more solar shortwave radiation than models predict; and 2) aerosols can significantly decrease the downward mean UV-visible radiation and the absorbed solar radiation at the surface by up to 28 and 23 Wm−2, respectively. Thus, quantitative study of UV and visible absorption by atmospheric constituents involved in homogeneous and heterogeneous C&P reactions is important for atmospheric models.  相似文献   
54.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   
55.
Characteristics of carbonyl compounds in ambient air of Shanghai,China   总被引:3,自引:0,他引:3  
The levels of carbonyl compounds in Shanghai ambient air were measured in five periods from January 2007 to October 2007 (covering winter, high-air-pollution days, spring, summer and autumn). A total of 114 samples were collected and eighteen carbonyls were identified. Formaldehyde, acetaldehyde and acetone were the most abundant carbonyls and their mean concentrations of 19.40 ± 12.00, 15.92 ± 12.07 and 11.86 ± 7.04 μg m−3 respectively, in the daytime for five sampling periods. Formaldehyde and acetaldehyde showed similar diurnal profiles with peak mixing ratios in the morning and early afternoon during the daytime. Their mean concentrations were highest in summer and lowest in winter. Acetone showed reversed seasonal variation. The high molecular weight (HMW, ≥C5) carbonyls also showed obvious diurnal variations with higher concentrations in the daytime in summer and autumn, while they were all not detected in winter. Formaldehyde and acetaldehyde played an important role in removing OH radicals in the atmosphere, but the contribution of acetone was below 1%. The carbonyls levels in high-air-pollution days were reported. More carbonyl species with higher concentrations were found in high-air-pollution days than in spring. These carbonyls were transported with other pollutants from north and northwest in March 27 to April 2, 2007 and then mixed with local sources. Comparing with Beijing and Guangzhou, the concentrations of formaldehyde and acetaldehyde in Shanghai were the highest, which indicated that the air pollution in Shanghai was even worse than expected.  相似文献   
56.
General purpose Computational Fluid Dynamics (CFD) solvers are frequently used in small-scale urban pollution dispersion simulations without a large extent of ver- tical flow. Vertical flow, however, plays an important role in the formation of local breezes, such as urban heat island induced breezes that have great significance in the ventilation of large cities. The effects of atmospheric stratification, anelasticity and Coriolis force must be taken into account in such simulations. We introduce a general method for adapting pressure based CFD solvers to atmospheric flow simulations in order to take advantage of their high flexibility in geometrical modelling and meshing. Compressibility and thermal stratification effects are taken into account by utilizing a novel system of transformations of the field variables and by adding consequential source terms to the model equations of incompressible flow. Phenomena involving mesoscale to microscale coupled effects can be analyzed without model nesting, applying only local grid refinement of an arbitrary level. Elements of the method are validated against an analytical solution, results of a reference calculation, and a laboratory scale urban heat island circulation experiment. The new approach can be applied with benefits to several areas of application. Inclusion of the moisture transport phenomena and the surface energy balance are important further steps towards the practical application of the method.  相似文献   
57.
Climatic regime shift and decadal anomalous events in China   总被引:15,自引:0,他引:15  
Climatic time series from historical documents and instrumental records from China showed temporal and regional patterns in the last two to three centuries, including two multidecadal oscillations at quasi-20-year and quasi-70-year timescales revealed by signal analysis from wavelet transform. Climatic anomalous events on the decadal timescale were identified based on the two oscillations when their positive (or negative) phases coincide with each other to amplify amplitude. The coldest event occurred in the decade of 1965–1975 in eastern China, while the periods of 1920–1930, 1940–1950, and 1988–2000 appeared to be warmer in most parts of China. For the precipitation series in northern China, the dry anomalous event was found in the late 1920s, while the wet anomalous event occurred in the 1950s. A severe drought in 1927–1929 in northern China coincided with the anomalous warm and dry decade, caused large-scale famine in nine provinces over northern China. Climatic anomalous events with a warm-dry or cold-wet association in the physical climate system would potentially cause severe negative impacts on natural ecosystem in the key vulnerable region over northern China. The spatial pattern of summer rainfall anomalies in the eastern China monsoon region showed an opposite variations in phase between the Yellow River Valley (North China) and the mid-low Yangtze River Valley as well as accompanied the shift of the northernmost monsoon boundary. Climatic regime shifts for different time points in the last 200 years were identified. In North China, transitions from dry to wet periods occurred around 1800, 1875, and 1940 while the transitions from wet to dry periods appeared around 1840, 1910, and the late 1970s. The reversal transition in these time points can also be found in the lower Yangtze River. Climatic regime shifts in China were linked to the interaction of mid- and low latitude atmospheric circulations (the westerly flow and the monsoon flow) when they cross the Tibetan Plateau in East Asia.  相似文献   
58.
Although a large volume of monitoring and computer simulation data exist for global coverage of HF, study of HF in the troposphere is still limited to industry whose primary interest is the safety and risk assessment of HF release because it is a toxic gas. There is very limited information on atmospheric chemistry, emission sources, and the behavior of HF in the environment. We provide a comprehensive review on the atmospheric chemistry of HF, modeling the reactions and transport of HF in the atmosphere, the removal processes in the vertical layer immediately adjacent to the surface (up to approximately 500 m) and recommend research needed to improve our understanding of atmospheric chemistry of HF in the troposphere. The atmospheric chemistry, emissions, and surface boundary layer transport of hydrogen fluoride (HF) are summarized. Although HF is known to be chemically reactive and highly soluble, both factors affect transport and removal in the atmosphere, the chemistry can be ignored when the HF concentration is at a sufficiently low level (e.g., 10 ppmv). At a low concentration, the capability for HF to react in the atmosphere is diminished and therefore the species can be mathematically treated as inert during the transport. At a sufficiently high concentration of HF (e.g., kg/s release rate and thousands of ppm), however, HF can go through a series of rigorous chemical reactions including polymerization, depolymerization, and reaction with water to form molecular complex. As such, the HF species cannot be considered as inert because the reactions could intimately influence the plume’s thermodynamic properties affecting the changes in plume temperature and density. The atmospheric residence time of HF was found to be less than four (4) days, and deposition (i.e., atmosphere to surface transport) is the dominant mechanism that controls the removal of HF and its oligomers from the atmosphere. The literature data on HF dry deposition velocity was relatively high compared to many commonly found atmospheric species such as ozone, sulfur dioxide, nitrogen oxides, etc. The global average of wet deposition velocity of HF was found to be zero based on one literature source. Uptake of HF by rain drops is limited by the acidity of the rain drops, and atmospheric particulate matter contributes negligibly to HF uptake. Finally, given that the reactivity of HF at a high release rate and elevated mole concentration cannot be ignored, it is important to incorporate the reaction chemistry in the near-field dispersion close to the proximity of the release source, and to incorporate the deposition mechanism in the far-field dispersion away from the release source. In other words, a hybrid computational scheme may be needed to address transport and atmospheric chemistry of HF in a range of applications. The model uncertainty will be limited by the precision of boundary layer parameterization and ability to accurately model the atmospheric turbulence.  相似文献   
59.
Inverse-dispersion calculations can be used to infer atmospheric emission rates through a combination of downwind gas concentrations and dispersion model predictions. With multiple concentration sensors downwind of a compound source (whose component positions are known) it is possible to calculate the component emissions. With this in mind, a field experiment was conducted to examine the feasibility of such multi-source inferences, using four synthetic area sources and eight concentration sensors arranged in different configurations. Multi-source problems tend to be mathematically ill-conditioned, as expressed by the condition number κ. In our most successful configuration (average κ = 4.2) the total emissions from all sources were deduced to within 10% on average, while component emissions were deduced to within 50%. In our least successful configuration (average κ = 91) the total emissions were calculated to within only 50%, and component calculations were highly inaccurate. Our study indicates that the most accurate multi-source inferences will occur if each sensor is influenced by only a single source. A “progressive” layout is the next best: one sensor is positioned to “see” only one source, the next sensor is placed to see the first source and another, a third sensor is placed to see the previous two plus a third, and so on. When it is not possible to isolate any sources κ is large and the accuracy of a multi-source inference is doubtful.  相似文献   
60.
实时GPS卫星钟差的可靠性预报是GPS实现实时精密单点定位的关键技术之一。传统的GM(1,1)模型不能及时更新新息数据,致使计算结果精度较差。本文首先介绍了常用的几个钟差模型,并利用新陈代谢GM(1,1)模型,与常用的二次多项式模型进行了对比。通过自编程序,依据某一IGS跟踪站实测的精密卫星星历数据,进行了实时的GPS卫星钟差预报,并与IGS事后精密钟差进行了比较。实验结果表明,基于该新陈代谢GM(1,1)模型估计的卫星钟差与IGS发布的最终精密钟差具有较好的有效性和一致性,这为实时GPS动态精密单点定位提供较高精度的卫星钟差产品。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号