首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18096篇
  免费   3520篇
  国内免费   4726篇
测绘学   1384篇
大气科学   3567篇
地球物理   4723篇
地质学   9356篇
海洋学   2397篇
天文学   841篇
综合类   1817篇
自然地理   2257篇
  2024年   104篇
  2023年   351篇
  2022年   974篇
  2021年   1110篇
  2020年   944篇
  2019年   1029篇
  2018年   1149篇
  2017年   1018篇
  2016年   1090篇
  2015年   961篇
  2014年   1153篇
  2013年   1146篇
  2012年   1105篇
  2011年   1154篇
  2010年   1127篇
  2009年   1029篇
  2008年   941篇
  2007年   829篇
  2006年   696篇
  2005年   658篇
  2004年   527篇
  2003年   518篇
  2002年   498篇
  2001年   557篇
  2000年   542篇
  1999年   732篇
  1998年   590篇
  1997年   565篇
  1996年   548篇
  1995年   428篇
  1994年   419篇
  1993年   352篇
  1992年   319篇
  1991年   208篇
  1990年   175篇
  1989年   150篇
  1988年   128篇
  1987年   97篇
  1986年   72篇
  1985年   55篇
  1984年   47篇
  1983年   38篇
  1982年   35篇
  1981年   19篇
  1980年   15篇
  1979年   21篇
  1978年   14篇
  1977年   12篇
  1975年   12篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
801.
中国正面临着低碳减排和保持经济增速的双重挑战。为利用碳排放权交易机制以最低的社会成本实现减排目标,我国自2013年起开始建设碳排放权交易试点,并于2017年12月起宣布正式启动全国碳市场。然而碳市场的顶层设计不可一蹴而就,需要在我国宏观经济改革的大背景下分阶段逐步推进。短期(2020年前)碳市场建设重在强化产权制度建设,完善市场交易基础。中期(2021—2030年)碳市场建设要形成活跃的市场氛围,充分降低我国的温室气体达峰成本。长期(2031—2050年)碳市场建设要形成稳定上升的碳价趋势,为我国的低碳转型提供长期动力。  相似文献   
802.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   
803.
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM) and tropospheric ozone(O_3). With the implementation of air pollution prevention and control actions in the last five years, the PM pollution in China has been substantially reduced. In contrast, under the conditions of the urban air pollution complex, the elevated O_3 levels in city clusters of eastern China, especially in warm seasons, have drawn increasing attention. Emissions of air pollutants and their precursors not only contribute to regional air quality, but also alter climate. Climate change in turn can change chemical processes, long-range transport, and local meteorology that influence air pollution. Compared to PM, less is known about O_3 pollution and its climate effects over China. Here, we present a review of the main findings from the literature over the period 2011–18 with regard to the characteristics of O_3 concentrations in China and the mechanisms that drive its interannual to decadal variations, aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps. We also review regional and global modeling studies that have investigated the impacts of tropospheric O_3 on climate, as well as the projections of future tropospheric O_3 owing to climate and/or emission changes.  相似文献   
804.
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the A-train constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10?16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.  相似文献   
805.
一次“晴天霹雳”致死事件分析   总被引:1,自引:0,他引:1  
对2017年广州从化地区一次"晴朗"天气下的闪电致死事件进行调查分析发现,这次事件是闪电首先击中一棵大树,然后击中附近人员头顶致死。根据目击者描述的时间和位置,利用闪电低频电场变化探测阵列的定位数据和广东电力等系统的雷电定位数据,结合广州番禺雷达观测资料,确定此事件是由一次含有7次回击的地闪过程的首次回击造成,其电流峰值强度为-30.9 kA。闪电起始于13.0 km高度的云内,经约600 ms云内发展过程后闪电通道从云体延伸出来,云砧区边缘(0 dBz)到回击点水平距离约300 m,降水区边缘(18 dBz)到回击点水平距离约1.8 km。使用雷击现场等效电路模型,计算旁络闪击空气击穿场强可击穿空气与人头部连接为通路,根据电路分流原理,如果雷电流击中13 m高的大树后流经到"跳点"(树干上方1/4)处后,则有13.2 kA雷电流直接闪击到受害者身上,同时还承受了78.3 kV跨步电压伤害,而距离雷击点10 m远的目击者仅承受1.3 kV跨步电压。   相似文献   
806.
周鑫  周顺武  覃丹宇  孙阳 《气象》2019,45(2):216-227
基于FY-2F静止气象卫星提供的2015年5—9月的高分辨率数据,通过温度阈值法识别出深、浅对流后,分析和比较了深、浅对流在对流初生(convective initiation,CI)至发展阶段中云顶高度、云顶快速降温率(cloud top cooling rate,CTC)以及多通道差值等云顶物理量特征的变化异同。结果表明:深、浅对流在CI阶段的云顶物理量特征具有相似变化特征,即云顶高度均在短时间内快速上升,CTC值均先减小后增大;深、浅对流差异表现为深(浅)对流云顶上升高度能(不能)超越水汽层高度;深对流CTC最低值较浅对流CTC最低值更低。基于CI阶段深、浅对流的CTC最低值的差异,通过个例验证,表明利用深、浅对流CTC最低值的差异,可以在识别出CI的基础,判断出CI是否发展成为深对流,从而能提前做出预警。  相似文献   
807.
CINRAD-SA双偏振雷达资料在降水估测中的应用初探   总被引:2,自引:0,他引:2  
陈超  胡志群  胡胜  张扬  李珊珊 《气象》2019,45(1):113-125
对基于水平反射率ZH和差分传播相移率K_(DP)的降水估测综合法R(C)进行了改进,并对广州S波段双偏振雷达2016年2次飑线和2次台风降水过程的Φ_(DP)使用小波分析进行滤波处理,在此基础上使用变距最小二乘法拟合得到K_(DP)的值。分别使用R(C)和R(Z_H)法对2次飑线和2次台风降水过程进行降水估算,将估算结果和雨量计小时雨量进行了对比,并将两种方法的评估结果进行了对比。结果表明:(1)对于飑线类型降水,R(C)法对5 mm·h~(-1)以上的降水估测精度要好于R(Z_H)法,且降水率越大,R(C)法优势越明显,当降水率≥20 mm·h~(-1)时,两次过程R(C)法比R(Z_H)法的平均相对误差(RE)降低了17. 2%,平均绝对误差(AE)减少了1.89 mm,平均均方根误差(RMSE)减少了1.66 mm;(2)对于台风类型降水,R(C)法对5 mm·h~(-1)以上的降水估测精度也好于R(Z_H)法,当降水率≥20 mm·h~(-1)时,两次过程R(C)法比R(Z_H)法的平均RE降低了33. 19%,平均AE减少了3. 95 mm,平均RMSE减少了4.05 mm;(3)对于飑线和台风两种类型降水R(C)法都明显改善了降水率较大时的R(Z_H)法低估问题,但R(C)法在降水率10 mm·h~(-1)时也存在低估,可能是由雨滴谱资料观测误差导致拟合的系数偏小或雷达硬件造成的观测偏差等造成的。  相似文献   
808.
杨文霞  范皓  杨洋  赵利伟 《气象》2019,45(9):1278-1287
利用河北省邢台市皇寺国家观测站布设的Ka波段云雷达、微波辐射计和微雨雷达以及地面雨量计等观测资料,对2017年5月3日一次西南涡天气过程的降水云系进行了综合分析,结果表明:本次降水过程为稳定性层状云过程,云内粒子下落速度由高空向地面逐渐增大,第一轮降水出现在云的发展阶段,第二轮降水出现在云的成熟阶段,每次降水开始前云内的相对湿度、水汽含量、液态水含量和温度曲线同时出现跃增和峰值,各指标在降水结束后出现较明显下降,之后得到恢复,出现第二三次峰值并产生降水;利用微波辐射计资料在时间和空间上连续反演计算云中水汽压和冰面饱和水汽压差值场("e—E_i"差值场),当云中过冷水和过冷水汽大值区与"e—E_i"差值场的正值区重合时,冷云中贝吉龙过程较强,有利于精细化定量判断强降水出现和人工增雨潜力区位置,综合以上遥感探测资料分析结果,可以认为本次天气过程有利的人工增雨作业时机出现两次,第一次在13:45降水刚刚开始至云顶下降到6 km前;第二次时间较长,云层条件更为有利,即17:40—21:15云顶高度维持在8~10 km的时段;作业适宜高度为4~8 km(-20~0℃)。  相似文献   
809.
文章研究关注了内蒙古冬季极端多雪气候事件的季节预测问题,在对大量降水观测资料、海温及大气环流场资料进行统计、分析、研究的基础上,确定了历史上58a(1960—2017年)内蒙古冬季极端多雪和少雪气候事件样本,通过对大气环流场的对比分析发现极端多雪或少雪冬季环流场特征显著不同,分析后确定了影响内蒙古冬季降雪的主要环流系统,包括西太平洋副热带高压、极涡、东亚大槽、环流E型及南方涛动等系统。同时,探索了对这些主要环流系统具有预测意义的来自海洋和大气场的预测信号,对预测信号关键区做了标准化定量提取,确定了预测信号综合指数分段判别阈值,给出了预测概念模型,取得了较好预测效果。  相似文献   
810.
在开环参数一定的条件下,速度传感反馈地震计中的环路滤波是影响地震计主要技术指标的关键环节之一.本文探讨了一阶极点高通、一阶极点低通、一阶零点高通、双一阶和零阶环路滤波在扩展地震计动态范围上限方面的优缺点.研究指出,对于用闭环反馈直接生成主导二阶极点的速度传感反馈地震计,一阶零点高通环路滤波的优点较多;若允许在环外生成主导二阶极点,则零阶环路滤波也不失为一个较好的方案.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号