With full-depth LADCP velocity data collected in a wide area southeast of Kyushu, Japan, large velocity currents, occasionally exceeding 15 cm s?1, were observed in a thick, 500–1,500 m, near-homogeneous density layer below approximately 3,000 m depth around the steep topographies. The currents were found not to flow along the topographic contours, and to be strongly ageostrophic. The directions of the bottom-layer currents are rather related with phase of the semi-diurnal tides, suggesting deeply intruded internal tides generated at the steep topographies. 相似文献
The fruticose lichen Cetrariella delisei is among the dominant lichen species in the deglaciated High Arctic areas of Svalbard. As part of a study of carbon cycling in the High Arctic, we aimed to estimate the primary production of lichen in a deglaciated area in Ny-Ålesund, Svalbard (79° N), by examining the effects of abiotic factors on the net photosynthesis ( Pn ) and dark respiration ( R ) rates of C. delisei . Experiments were conducted in the snow-free season of 2000 using an open-flow gas exchange system with an infrared gas analyser. Positive photosynthetic activities were observed on rainy days or soon after rainfall when the thallus water content was high, whereas photosynthetic activities dropped below the detectable limit on clear days because of the low thallus water content. Under a sufficiently high thallus water content and close to light saturation, Pn was nearly constant over a wide temperature range of 4–20 °C, while R increased with increasing temperature. We constructed a model for estimating the net primary production ( NPP ) of lichen based on the relationships between abiotic factors and the CO2 exchange rate. The mean, minimum and maximum NPP values in the snow-free season, estimated using meteorological data obtained from 1995–2003, were 5.1, 1.0 and 8.4 g dry wt. m−2 snow-free season−1, respectively. These results suggest that NPP is highly variable and the contribution of lichen to carbon input is small compared with that of vascular plants and mosses in the study site. 相似文献
The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.
Telemetric network observations of pulse-like geoelectric charge signals using a vertical dipole buried under the ground were undertaken at various observation sites over a wide area in Japan from April 1996. From continuous records of the signals during the six months following that, we attempted to select anomalous signals, possibly related to seismic electric activity. Special attention was paid to the elimination of noise resulting from industrial and meteorological electric activity, comparison with other electromagnetic signals in the VLF band and the relation between the precursor period and the distance from the eventual main shock that occurred in Japan. Four candidate precursor electric signals, which were not contaminated by industrial and meteorological electric activity, were then selected, of which the second appeared before the Akita-ken Nairiku-nanbu earthquake swarm, for which the maximum M = 5.9 occurred on 1996 August 11, and the third and fourth before the Chiba-ken Toho-oki earthquake, M = 6.6, on 1996 September 11. A tentative qualitative model explaining why the candidate precursory signal is related to stress building up before an earthquake is presented in terms of the electrification of gases released from fracturing rocks immediately prior to the main shock. 相似文献
Major pathways of biogenic carbon (C) flow are resolved for the planktonic food web of the flaw lead polynya system of the Amundsen Gulf (southeast Beaufort Sea, Arctic Ocean) in spring-summer 2008. This period was relevant to study the effect of climate change on Arctic marine ecosystems as it was characterized by unusually low ice cover and warm sea surface temperature. Our synthesis relied on a mass balance estimate of gross primary production (GPP) of 52.5 ± 12.5 g C m−2 calculated using the drawdown of nitrate and dissolved inorganic C, and a seasonal f-ratio of 0.64. Based on chlorophyll a biomass, we estimated that GPP was dominated by phytoplankton (93.6%) over ice algae (6.4%) and by large cells (>5 μm, 67.6%) over small cells (<5 μm, 32.4%). Ancillary in situ data on bacterial production, zooplankton biomass and respiration, herbivory, bacterivory, vertical particle fluxes, pools of particulate and dissolved organic carbon (POC, DOC), net community production (NCP), as well as selected variables from the literature were used to evaluate the fate of size-fractionated GPP in the ecosystem. The structure and functioning of the planktonic food web was elucidated through inverse analysis using the mean GPP and the 95% confidence limits of every other field measurement as lower and upper constraints. The model computed a net primary production of 49.2 g C m−2, which was directly channeled toward dominant calanoid copepods (i.e. Calanus hyperboreus 20%, Calanus glacialis 10%, and Metridia longa 10%), other mesozooplankton (12%), microzooplankton (14%), detrital POC (18%), and DOC (16%). Bacteria required 29.9 g C m−2, a demand met entirely by the DOC derived from local biological activities. The ultimate C outflow comprised respiration fluxes (82% of the initial GPP), a small sedimentation (3%), and a modest residual C flow (15%) resulting from NCP, dilution and accumulation. The sinking C flux at the model limit depth (395 m) supplied 60% of the estimated benthic C demand (2.8 g C m−2), suggesting that the benthos relied partly on other C sources within the bottom boundary layer to fuel its activity. In summary, our results illustrate that the ongoing decline in Arctic sea ice promotes the growth of pelagic communities in the Amundsen Gulf, which benefited from a ∼80% increase in GPP in spring-summer 2008 when compared to 2004 – a year of average ice conditions and relatively low GPP. However, 53% of the secondary production was generated within the microbial food web, the net ecological efficiency of zooplankton populations was not particularly high (13.4%), and the quantity of biogenic C available for trophic export remained low (6.6 g C m−2). Hence it is unlikely that the increase in lower food web productivity, such as the one observed in our study, could support new harvestable fishery resources in the offshore Beaufort Sea domain. 相似文献
A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO
42–
) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO
42–
toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO
42–
are almost independent of NOx concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO
42–
at high latitudes. 相似文献