The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones. 相似文献
This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations in ψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψ function of Fairall et al. (1996) (i.e., Fairall96, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range ?2.6 ? RiB < ?0.1; when conditions become weakly unstable (?0.1 ? RiB < ?0.01), Fairall96 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (?0.01 ? RiB < 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairall96 are similar, with Edson04 being the best function but offering only a weak advantage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairall96 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0–5-m M slope, 5–40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified, Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method. 相似文献