首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3565篇
  免费   99篇
  国内免费   39篇
测绘学   54篇
大气科学   316篇
地球物理   821篇
地质学   1257篇
海洋学   339篇
天文学   494篇
综合类   10篇
自然地理   412篇
  2021年   45篇
  2020年   42篇
  2019年   51篇
  2018年   59篇
  2017年   65篇
  2016年   71篇
  2015年   75篇
  2014年   73篇
  2013年   193篇
  2012年   97篇
  2011年   145篇
  2010年   148篇
  2009年   168篇
  2008年   136篇
  2007年   121篇
  2006年   123篇
  2005年   111篇
  2004年   98篇
  2003年   88篇
  2002年   86篇
  2001年   75篇
  2000年   47篇
  1999年   56篇
  1998年   57篇
  1997年   45篇
  1996年   68篇
  1995年   46篇
  1994年   50篇
  1993年   45篇
  1992年   54篇
  1991年   55篇
  1990年   49篇
  1989年   47篇
  1988年   50篇
  1987年   51篇
  1986年   39篇
  1985年   70篇
  1984年   85篇
  1983年   83篇
  1982年   68篇
  1981年   48篇
  1980年   53篇
  1979年   52篇
  1978年   51篇
  1977年   48篇
  1976年   40篇
  1975年   32篇
  1974年   33篇
  1973年   34篇
  1972年   25篇
排序方式: 共有3703条查询结果,搜索用时 15 毫秒
501.
The growing literature on potentially-dangerous climate change is examined and research on human response to natural hazards is analyzed to develop propositions on social response pathways likely to emerge in the face of increasingly severe climate change. A typology of climate change severity is proposed and the potential for mal-adaptive responses examined. Elements of a warning system for severe climate change are briefly considered.  相似文献   
502.
As part of the 2000 Texas Air Quality Study (TexAQS), we studied the isoprene oxidation process under ambient conditions to discern the presence of chlorine atom (Cl) chemistry in the Houston, Texas urban area. By measuring chloromethylbutenone (CMBO) and an isomer of chloromethylbutenal (CMBA), we clearly observed sixteen episodes of active Cl chemistry during the 24-day experiment. Estimated median Cl concentration during each of these episodes was between the detection limit of ~102 atoms cm−3 and 50 - 30 + 70 ×104 50_{ - 30}^{ + 70} \times {10^4} atoms cm−3. Cl concentration during all the episodes averaged 7.6 - 2.0 + 4.7 ×104 7.6_{ - 2.0}^{ + 4.7} \times {10^4} atoms cm−3 and thus amounted to less than 3% of the OH concentration during the same periods. During the episodes, the fraction of oxidation chemistry initiated by Cl ranged from 3–43% and was strongly dependent on the quantity and type of hydrocarbons present in the atmosphere. Because of its intermittent presence and low concentration, Cl is not a broadly influential oxidant in the Houston, Texas urban area.  相似文献   
503.
We report on our implementation of EULAG as a dynamical core in the Community Atmospheric Model (CAM). EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG’s name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over the existing dynamical cores in CAM. This paper uses a series of aqua-planet simulations to demonstrate that CAM-EULAG results compare favorably with those from CAM simulations at standard CAM resolution that use current finite volume or Eulerian-spectral dynamical core options. We also show that the grid adaptivity implemented in CAM3-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection.  相似文献   
504.
Establishing connections between meteorites and their parent asteroids is an important goal of planetary science. Several links have been proposed in the past, including a spectroscopic match between basaltic meteorites and (4) Vesta, that are helping scientists understand the formation and evolution of the Solar System bodies. Here we show that the shocked L chondrite meteorites, which represent about two thirds of all L chondrite falls, may be fragments of a disrupted asteroid with orbital semimajor axis a=2.8 AU. This breakup left behind thousands of identified 1–15 km asteroid fragments known as the Gefion family. Fossil L chondrite meteorites and iridium enrichment found in an ≈467 Ma old marine limestone quarry in southern Sweden, and perhaps also ∼5 large terrestrial craters with corresponding radiometric ages, may be tracing the immediate aftermath of the family-forming collision when numerous Gefion fragments evolved into the Earth-crossing orbits by the 5:2 resonance with Jupiter. This work has major implications for our understanding of the source regions of ordinary chondrite meteorites because it implies that they can sample more distant asteroid material than was previously thought possible.  相似文献   
505.
How big were the first planetesimals? We attempt to answer this question by conducting coagulation simulations in which the planetesimals grow by mutual collisions and form larger bodies and planetary embryos. The size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and we search for the one that produces at the end objects with a SFD that is consistent with Asteroid belt constraints. We find that, if the initial planetesimals were small (e.g. km-sized), the final SFD fails to fulfill these constraints. In particular, reproducing the bump observed at diameter in the current SFD of the asteroids requires that the minimal size of the initial planetesimals was also ∼100 km. This supports the idea that planetesimals formed big, namely that the size of solids in the proto-planetary disk “jumped” from sub-meter scale to multi-kilometer scale, without passing through intermediate values. Moreover, we find evidence that the initial planetesimals had to have sizes ranging from 100 to several 100 km, probably even 1000 km, and that their SFD had to have a slope over this interval that was similar to the one characterizing the current asteroids in the same size range. This result sets a new constraint on planetesimal formation models and opens new perspectives for the investigation of the collisional evolution in the Asteroid and Kuiper belts as well as of the accretion of the cores of the giant planets.  相似文献   
506.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   
507.
Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.  相似文献   
508.
Carbon-bound hydrogen in sedimentary organic matter can undergo exchange over geologic timescales, altering its isotopic composition. Studies investigating the natural abundance distribution of 1H and 2H in such molecules must account for this exchange, which in turn requires quantitative knowledge regarding the endpoint of exchange, i.e., the equilibrium isotopic fractionation factor (αeq). To date, relevant data have been lacking for molecules larger than methane. Here we describe an experimental method to measure αeq for C-bound H positions adjacent to carbonyl group (Hα) in ketones. H at these positions equilibrates on a timescale of days as a result of keto-enol tautomerism, allowing equilibrium 2H/1H distributions to be indirectly measured. Molecular vibrations for the same ketone molecules are then computed using Density Functional Theory at the B3LYP/6-311G** level and used to calculate αeq values for Hα. Comparison of experimental and computational results for six different straight and branched ketones yields a temperature-dependent linear calibration curve with slope = 1.081−0.00376T and intercept = 8.404−0.387T, where T is temperature in degrees Celsius. Since the dominant systematic error in the calculation (omission of anharmonicity) is of the same size for ketones and C-bound H in most other linear compounds, we propose that this calibration can be applied to analogous calculations for a wide variety of organic molecules with linear carbon skeletons for temperatures below 100 °C. In a companion paper (Wang et al., 2009) we use this new calibration dataset to calculate the temperature-dependent equilibrium isotopic fractionation factors for a range of linear hydrocarbons, alcohols, ethers, ketones, esters and acids.  相似文献   
509.
Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ?25 but ?100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ∼1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO2 gas, and a more mature (oxidized) kerogen with a lower H/C which in turn melts incongruently with further burial to produce more crude oil, CO2 gas, and a kerogen with a lower H/C and so forth.The petroleum generated in the process progresses from heavy naphthenic crude oils at low temperatures to mature petroleum at ∼150 °C. For example, the results of Computer Experiment 27 (see below) indicate that the overall incongruent melting reaction in the water-absent region of the system C-H-O at 150 °C and a depth of ∼4.3 km of an immature type-II/III kerogen with a bulk composition represented by C292H288O12(c) to produce a mature (oxidized) kerogen represented by C128H68O7(c), together with a typical crude oil with an average metastable equilibrium composition corresponding to C8.8H16.9 (C8.8H16.9(l)) and CO2 gas (CO2(g)) can be described by writing
(A)  相似文献   
510.
Fracture surfaces of a natural carrollite specimen have been characterised by synchrotron and conventional X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy. For the synchrotron X-ray measurements, the mineral surfaces were prepared under clean ultra high vacuum and were unoxidised. The characterisation was undertaken primarily to establish unequivocally the oxidation state of the Cu in the mineral, but also to obtain information on the electronic environments of the Co and S, and on the surface species. Experimental and simulated Cu L2,3-edge absorption spectra confirmed an oxidation state of CuI, while Co 2p photoelectron and Co L2,3 absorption spectra were largely consistent with the CoIII established previously by nuclear magnetic resonance spectroscopy. S 2p photoelectron spectra provided no evidence for S to be present in the bulk in more than one state, and were consistent with an oxidation state slightly less negative than S-II. Therefore it was concluded that carrollite can be best represented by CuICoIII2(S4)-VII. The CuI oxidation state is in agreement with that expected for Cu tetrahedrally coordinated by S, but is in disagreement with the CuII deduced previously from some magnetic, magnetic resonance and Cu L-edge X-ray absorption spectroscopic measurements. A significant concentration of S species with core electron binding energies both lower and higher than the bulk value were formed at fracture surfaces, and these entities were assigned to monomeric and oligomeric surface S species. The density of Cu d states calculated for carrollite differed from that previously reported but was consistent with the observed Cu L3 X-ray absorption spectrum. The initial oxidation of carrollite in air under ambient conditions was confirmed to be congruent, unlike the incongruent reaction undergone by a number of non-thiospinel sulfide minerals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号